Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence from the rare-earth-element record of mantle melting for cooling of the Tertiary Iceland plume

Abstract

Widespread flood basalt volcanism and continental rifting in the northeast Atlantic in the early Tertiary period (55 Myr ago) have been linked to the mantle plume now residing beneath Iceland1,2,3,4,5. Although much is known about the present-day Iceland plume6,7,8,9, its thermal structure, composition and position in the early Tertiary period remain unresolved. Estimates of its temperature, for example, range from >1,600 °C in some plume models3 to 1,500 °C based on the volume and composition of basaltic crust10,11,12. Several recent studies4 have emphasized similarities in the thermal and chemical structure of the Tertiary and present-day plumes to argue for stability of the mantle anomaly, whereas others12,13 relate variations in basalt volumes and compositions to changes in plume flux. Moreover, some authors1,2,13 have assumed that the plume was rift-centred for its entire history, whereas others argue that it became ridge-centred only after plate separation14,15. Here we report compositional data for 6,000 metres of flood basalts erupted in east Greenland, close to the inferred plume axis, that we use to constrain the Tertiary plume structure. Rare-earth-element systematics place limits on the pressures and extents of mantle melting and show that the mantle was initially moderately hot (1,500 °C), but that its temperature declined during flood volcanism. These observations are difficult to reconcile with current plume-head models, and call for important lithospheric control5,10,16,17,18 on actively upwelling mantle along the rifted margin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of northeast Atlantic.
Figure 2: Chemical stratigraphy.
Figure 3: Mantle melting systematics.

Similar content being viewed by others

References

  1. Brooks, C. K. Rifting and doming in southern East Greenland. Nature 244, 23–25 (1973).

    Article  ADS  Google Scholar 

  2. White, R. S. & McKenzie, D. P. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94, 7685–7729 (1989).

    Article  ADS  Google Scholar 

  3. Campbell, I. H. & Griffiths, R. W. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett. 99, 79–93 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Fitton, J. G., Saunders, A. D., Norry, M. J., Hardason, B. S. & Taylor, R. N. Thermal and chemical structure of the Iceland plume. Earth Planet. Sci. Lett. 153, 197–208 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Larsen, H. C. & Saunders, A. D. Tectonism and volcanism at the SE Greenland rifted margin: a record of plume impact and later continental rupture. Proc. ODP Sci. Res. 152, 502–533 (1998).

    Google Scholar 

  6. Schilling, J.-G., Meyer, P. S. & Kingsley, R. H. Evolution of the Iceland hotspot. Nature 296, 313–320 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Elliott, T. R., Hawkesworth, C. J. & Gronvold, K. Dynamic melting of the Iceland plume. Nature 351, 201–206 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Hémond, C., Arndt, N., Lichtenstein, U., Hofmann, A. W., Oskarsson, N. & Steinthorson, S. The heterogeneous Iceland plume: Nd-Sr-O isotopes and trace element constraints. J. Geophys. Res. 98, 15833–15850 (1993).

    Article  ADS  Google Scholar 

  9. Wolfe, C. J., Bjarnason, I. T., VanDecar, J. C. & Solomon, S. C. Seismic structure of the Iceland mantle plume. Nature 385, 245–247 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Fram, M. S. & Lesher, C. E. Geochemical constraints on mantle melting during creation of the North Atlantic basin. Nature 363, 712–715 (1993).

    Article  ADS  CAS  Google Scholar 

  11. White, R. S. & McKenzie, D. P. Mantle plumes and flood basalts. J. Geophys. Res. 100, 17543–17585 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Barton, A. J. & White, R. S. Crustal structure of Edoras Bank continental margin and mantle thermal anomalies beneath the North Atlantic. J. Geophys. Res. 102, 3109–3129 (1997).

    Article  ADS  Google Scholar 

  13. Schilling, J.-G. & Noe-Nygaard, A. Faeroe-Iceland plume: rare-earth evidence. Earth Planet. Sci. Lett. 24, 12–14 (1974).

    Article  Google Scholar 

  14. Lawver, L. A. & Müller, R. D. Iceland hotspot track. Geology 22, 311–314 (1994).

    Article  ADS  Google Scholar 

  15. Tegner, C. et al . 40Ar−39Ar geochronology of Tertiary mafic intrusions along the East Greenland rifted margin: Relation to flood basalts and the Iceland hostpot track. Earth Planet. Sci. Lett. 156, 75–88 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Mutter, J. C., Buck, W. R. & Zehnder, C. M. Convective partial melting 1. A model for the formation of thick basaltic sequences during the initiation of spreading. J. Geophys. Res. 93, 1031–1048 (1988).

    Article  ADS  Google Scholar 

  17. Anderson, D. L., Zhang, Y. S. & Tanimoto, T. in Magmatism and the Causes of Continental Break-up (eds Storey, B. C., Alabaster, T. & Pankhurst, R. J.) 99–124 (Spec. Publ. 68, Geol. Soc. London, 1992).

    Google Scholar 

  18. Sleep, N. H. Lateral flow of hot plume material ponded at sublithospheric depths. J. Geophys. Res. 101, 28065–28083 (1996).

    Article  ADS  Google Scholar 

  19. Larsen, L. M., Watt, W. S. & Watt, M. Geology and petrology of the Lower Tertiary plateau basalts of the Scoresby Sund region, East Greenland. Bull. Grønlands Geol. Unders. 157, 1–164 (1989).

    Google Scholar 

  20. Pedersen, A. K., Watt, M., Watt, W. S. & Larsen, L. M. Structure and stratigraphy of the early Tertiary basalts of the Blosseville Kyst, East Greenland. J. Geol. Soc. Lond. 154, 565–570 (1997).

    Article  Google Scholar 

  21. Sun, S. S. & McDonough, W. F. in Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.) 313–345 (Spec. Publ. 42, Geol. Soc., London, 1989).

    Google Scholar 

  22. Schilling, J.-G. et al . Petrologic and geochemical variations along the Mid-Atlantic ridge from 29° N to 73° N. Am. J. Sci. 283, 510–586 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Klein, E. M. & Langmuir, C. H. Global correlations of ocean ridge basalt geochemistry with axial depth and crustal thickness. J. Geophys. Res. 92, 8089–8115 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Fram, M. S. & Lesher, C. E. Generation and polybaric differentiation of magmas of East Greenland Early Tertiary flood basalts. J. Petrol. 38, 231–275 (1997).

    Article  ADS  CAS  Google Scholar 

  25. McKenzie, D. & Bickle, M. J. The volume and the composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Langmuir, C. H., Klein, E. M. & Plank, T. in Mantle Flow and Melt Generation at Mid-ocean Ridges (eds Morgan, J. P., Blakmun, D. K. & Sinton, J. M.) 183–280 (Am. Geophys. Union Monogr., Washington DC, 1992).

    Google Scholar 

  27. Schilling, J.-G. Fluxes and excess temperatures of mantle plumes inferred from their interactions with migrating mid-ocean ridges. Nature 352, 397–403 (1991).

    Article  ADS  Google Scholar 

  28. Fram, M. S., Lesher, C. E. & Volpe, A. M. Mantle melting systematics: the transition from continental to oceanic volcanism on the Southeast Greenland margin. Proc. ODP Sci. Res. 152, 373–386 (1998).

    CAS  Google Scholar 

  29. Hardason, B. S., Fitton, J. G., Ellam, R. M. & Pringle, M. S. Rift relocation — a geochemical and geochronological investigation of a paleo-rift in northwest Iceland. Earth Planet. Sci. Lett. 153, 181–196 (1997).

    Article  ADS  Google Scholar 

  30. Hopper, J. R. et al . Magmatism and rift margin evolution: Evidence from northwest Australia. Geology 20, 853–857 (1992).

    Article  ADS  Google Scholar 

  31. Holbrook, W. S. & Kelemen, P. B. Large igneous province on the US Atlantic margin and implications for magmatism during continental breakup. Nature 364, 433–436 (1993).

    Article  ADS  Google Scholar 

  32. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

    Article  ADS  CAS  Google Scholar 

  33. Lesher, C. E. & Baker, M. B. Near-solidus phase relations of mantle peridotite at 3.6-5 GPa. Eos 78, 812 (1997).

    Google Scholar 

Download references

Acknowledgements

We thank our colleagues (S. Bernstein, D. K. Bird, C. K. Brooks, R. A. Duncan, J.Helgason, P. B. Kelemen, P. S. Neuhoff, P. O'Day and M. Storey) involved in sampling of East Greenland flood basalts in 1995, coordinated by A. K. Pedersen and T. F. D. Nielsen. Discussions with H. C. Larsen, T.F. D. Nielsen, C. K. Brooks, M. Storey, and J. R. Hopper helped to mature the ideas presented here. The Danish National Research Foundation and the US NSF supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Lesher.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tegner, C., Lesher, C., Larsen, L. et al. Evidence from the rare-earth-element record of mantle melting for cooling of the Tertiary Iceland plume. Nature 395, 591–594 (1998). https://doi.org/10.1038/26956

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26956

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing