Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Human myasthenic sera reduce acetylcholine sensitivity of human muscle cells in tissue culture

Abstract

MYASTHENIA gravis is a muscle disease of man characterised by impaired neuromuscular transmission during repetitive motor nerve activity. Recent studies suggest that the defect in myasthenia gravis is post-synaptic and that myasthenic end-plates have a lower density of functional acetylcholine (ACh) receptors than normal end-plates. Thus end-plates from myasthenic patients show unusually small miniature end-plate potentials1,2, are less sensitive than normal end-plates to iontophoretically applied ACh (refs 2, 3) and bind reduced amounts of α-bungarotoxin4,5—a snake neurotoxin which is considered to bind specifically to nicotinic ACh receptors (see ref. 5). The presence of antibodies against ACh receptors in the sera of myasthenic but not of control patients6–10 suggests that anti-receptor antibodies might act in some way to decrease the number of functional receptors at the motor end-plate. Previous investigations, however, have failed to show conclusively that myasthenic sera contain a factor that reduces muscle ACh sensitivity3,11–13. Here we show that myasthenic sera can reduce the ACh sensitivity of tissue cultured human muscle cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Elmqvist, D., Hofmann, W. W., Kugelberg, J. & Quastel, D. M. J. J. Physiol., Lond. 174, 417–434 (1964).

    Article  CAS  Google Scholar 

  2. Albuquerque, E. X., Rash, J. E., Mayer, R. F. & Sattersfield, J. R. Expl. Neurol. 51, 536–563 (1976).

    Article  CAS  Google Scholar 

  3. Albuquerque, E. X. et al. Ann. N.Y. Acad. Sci. 274, 475–492 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Famborough, D. M., Drachman, D. B. & Satyamurti, S. Science 182, 293–295 (1975).

    Article  ADS  Google Scholar 

  5. Green, D. P. L., Miledi, R. Perez de la Mora, M. & Vincent, A. Phil. Trans. R. Soc. B 270, 551–559 (1975).

    Article  CAS  Google Scholar 

  6. Almon, R. R., Andrew, C. G. & Appel, S. H. Science 186, 55–57 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Almon, R. R. & Appel, S. H. Biochim. biophys. Acta 393, 66–67 (1975).

    Article  CAS  Google Scholar 

  8. Bender, A. N., Ringel, S. P., Engel, W. K., Daniels, M. P. & Vogel, Z. Lancet i, 607–609 (1975).

    Article  Google Scholar 

  9. Lindstrom, J. M., Lennon, V. A., Seybold, M. E. & Whittingham, S. Ann. N.Y. Acad. Sci. 274, 254–274 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Aharanov, A., Abramsky, O., Tarrab-Hazdai, R. & Fuchs, S. Lancet, ii, 340–342 (1975).

    Article  Google Scholar 

  11. Parkes, J. D. & McKinna, J. A. Lancet i, 388–391 (1966).

    Article  Google Scholar 

  12. Namba, T. & Grob, D. Neurology, Minneap. 19, 173–184 (1969).

    Article  CAS  Google Scholar 

  13. Nastuk, W. L., Strauss, A. J. L. & Osserman, K. E. Am. J. Med. 26, 394–409 (1959).

    Article  CAS  Google Scholar 

  14. Vogt, M. & Dulbecco, R. Proc. natn. Acad. Sci. U.S.A. 49, 171–180 (1963).

    Article  ADS  CAS  Google Scholar 

  15. Heinemann, S., Bevan, S., Kullberg, R., Lindstrom, J. & Rice, J. Proc. natn. Acad. Sci. U.S.A. (in the press).

  16. Edelman, G. M. Science 192, 218–226 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Raff, M. C. Nature 259, 265–266 (1976).

    Article  ADS  Google Scholar 

  18. Berg, D. K. & Hall, Z. W. Science 184, 473–475 (1974).

    Article  ADS  CAS  Google Scholar 

  19. Devreotes, P. N. & Famborough, D. M. J. Cell. Biol. 65, 335–358 (1975).

    Article  CAS  Google Scholar 

  20. Chuang, C. C. & Huang, M. C. Nature 253, 643–644 (1975).

    Article  ADS  Google Scholar 

  21. Patrick, J., McMillan, J., Wolfson, H. & O'Brien, J. C. J. biol. Chem. (in the press).

  22. Hartzell, H. C. & Famborough, D. M. Devl Biol. 30, 153–165 (1973).

    Article  CAS  Google Scholar 

  23. Loor, F., Forni, L. & Pernis, B. Eur. J. Immun. 2, 203–212 (1972).

    Article  CAS  Google Scholar 

  24. Lennon, V. A., Lindstrom, J. M. & Seybold, M. E. J. exp. Med. 141, 1365–1375 (1975).

    Article  CAS  Google Scholar 

  25. Granato, D. A., Fulpius, B. W. & Moody, J. F. Proc. natn. Acad. Sci. U.S.A. 73, 2872–2876 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Fertuck, H. C., Woodward, W. & Salpeter, M. M. J. Cell Biol. 66, 209–213 (1975).

    Article  CAS  Google Scholar 

  27. Brown, K. T. & Flaming, D. G. Science 185, 693–695 (1974).

    Article  ADS  CAS  Google Scholar 

  28. Lindstrom, J. M. Clin. Immun. Immunopathol. 7, 36–43 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BEVAN, S., KULLBERG, R. & HEINEMANN, S. Human myasthenic sera reduce acetylcholine sensitivity of human muscle cells in tissue culture. Nature 267, 263–265 (1977). https://doi.org/10.1038/267263a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/267263a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing