Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ca2+-dependent ATPase activity of bovine receptor cell outer segment

Abstract

THE bleaching of as little as one molecule of rhodopsin can trigger hyperpolarisation of the vertebrate visual receptor cell1. A light modulated Ca2+ flux may function in the receptor cell outer segments (OS) as an intracellular messenger amplifying and transducing the photochemical signal from its disk location to the external plasma membrane2,3. In support of this hypothesis, Ca2+ has been shown to be concentrated in dark adapted disks4 and to be released on bleaching5–7. This suggests the presence of a Ca2+-dependent ATPase, an enzyme often associated with cellular Ca2+ pumps. The report that either the bleaching of a few per cent of the rhodopsin molecules within a frog rod suspension or the intra-OS elevation of Ca2+ to 10−7 M or greater, by means of ionophore A23187, can induce a rapid and very large decrease in ATP content8 provides indirect evidence for the presence of a Ca2+-activated ATPase. Interpretation of this finding is difficult, however, due to other known light-activated, ATP-dependent OS functions9. We present here direct evidence that purified bovine OS exhibit significant Ca2+-dependent ATPase activity, which seems to be independent of contributions from subcellular contamination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hecht, S., Shlaer, S., and Pirenne, M. H., J. gen. Physiol., 25, 819–840 (1942).

    Article  CAS  Google Scholar 

  2. Hagins, W. A., and Yoshikami, S., Expl Eye Res., 18, 299–305 (1974).

    Article  CAS  Google Scholar 

  3. Zuckerman, R., J. Physiol., 235, 333–354 (1973).

    Article  CAS  Google Scholar 

  4. Bownds, D., Gordon-Walker, A., Gaide-Huguenin, A.D., and Robinson, W. E., J. gen. Physiol., 58, 225–237 (1971).

    Article  CAS  Google Scholar 

  5. Hendriks, T., Daemen, F. J. M., and Bonting, S. L., Biochim. biophys. Acta, 345, 468–473 (1974).

    Article  CAS  Google Scholar 

  6. Poo, M. M., and Cone, R. A., Expl Eye Res., 17, 503–510 (1973).

    Article  CAS  Google Scholar 

  7. Mason, W. T., Fager, R. S., and Abrahamson, E. W., Nature, 247, 562–563 (1974).

    Article  ADS  CAS  Google Scholar 

  8. Carretta, A., and Cavaggioni, A., J. Physiol. 257, 687–697 (1976).

    Article  CAS  Google Scholar 

  9. Weller, M., Goridis, C., Virmaux, N., and Mandel, P., Expl Eye Res., 21, 405–407 (1975).

    Article  CAS  Google Scholar 

  10. Erhardt, F., Ostroy, S. E. and Abrahamson, E. W., Biochim. biophys. Acta, 112, 256–264 (1966).

    Article  CAS  Google Scholar 

  11. Raubach, R. A., Franklin, L. K., and Dratz, E. A., Vision Res. 14, 335–337 (1973).

    Article  Google Scholar 

  12. McConnell, D. G., J. Cell Biol., 27, 459–473 (1965).

    Article  CAS  Google Scholar 

  13. Rossi, C. S., and Lehninger, A. L., Biochem. Z., 338, 698–713 (1963).

    CAS  PubMed  Google Scholar 

  14. Brierley, G. P., Murer E., and Green, D. E., Science, 140, 60–62 (1963).

    Article  ADS  CAS  Google Scholar 

  15. Huijing, F., and Slater, E. C., J. Biochem., 49, 493–501 (1961).

    Article  CAS  Google Scholar 

  16. Butcher, R. W., and Sutherland, E. W., J. biol. Chem., 237, 1244–1250 (1962).

    CAS  PubMed  Google Scholar 

  17. Baginski, E. S., Foa, P. P., and Zak, B., Clin. chim. Acta, 15, 155–158 (1967).

    Article  CAS  Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

  19. Welcher, E. J., The Analytical Uses of Ethylenediaminetetraacetic Acid (Van Nostrand, Princeton, 1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SACK, R., HARRIS, C. Ca2+-dependent ATPase activity of bovine receptor cell outer segment. Nature 265, 465–466 (1977). https://doi.org/10.1038/265465a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/265465a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing