Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Integrator gene in Aspergillus nidulans

Abstract

ONE of the most intriguing problems in genetics is how the regulation of a particular structural gene can be programmed in such a way that its expression can be elicited in a variety of different contexts. Stated differently, how can the concomitant expression of two or more non-contiguous structural genes capable of independent expression be achieved? Britten and Davidson1–3 have proposed a model for gene regulation which gives considerable insight into this problem. One feature of their model is the existence of positively acting regulatory genes, designated integrator genes, whose role is to achieve precisely this concomitant expression of non-contiguous structural genes. Although the model was developed to account for cell differentiation in higher eukaryotes, a similar, although possibly less elaborate, form of regulatory machinery might be applicable in lower eukaryotes. In the fungus Aspergillus nidulans, as in higher eukaryotes, functionally related genes are seldom clustered4. Given the considerable metabolic versatility of this organism, instances of inducible enzymes participating in more than one metabolic pathway should not be unduly rare. Evidence for the existence of integrator genes could come from the study of regulatory mutations affecting such enzymes. The model also requires the existence of receptor sites for integrator gene products, a not implausible requirement for A. nidulans, where several cis-acting regulatory mutations tightly linked to structural genes under their control have been identified (refs 5–8 and unpublished results of C. R. Bailey and H. N. A.). Here I report that the intAgene of A.nidulans, previously designated amdR and shown by Hynes and coworkers9–11 to be a positive regulatory gene in linkage group II involved in acetamidase synthesis, is an integrator gene of the type described by Britten and Davidson. Moreover, intA is possibly especially interesting because one of the compounds whose metabolism it controls is γ-amino-n-butyric acid (GABA), whose metabolism has been extensively investigated in a wide variety of organisms because of its role in the regulation of neuronal activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Britten, R. J., and Davidson, E. H., Science, 165, 349–357 (1969).

    Article  ADS  CAS  Google Scholar 

  2. Britten, R. J., and Davidson, E. H., Q. Rev. Biol., 46, 111–138 (1971).

    Article  CAS  Google Scholar 

  3. Davidson, E. H., and Britten, R. J., Q. Rev. Biol., 48, 565–613 (1973).

    Article  CAS  Google Scholar 

  4. Clutterbuck, A. J., in Handbook of Genetics, 1, (edit. by King, R. C.), 447–510 (Plenum, New York, 1974).

    Google Scholar 

  5. Hynes, M. J., Nature, 253, 210–212 (1975).

    Article  ADS  CAS  Google Scholar 

  6. Arst, H. N., Jr, and MacDonald, D. W., Nature, 254, 26–31 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Arst, H. N., Jr, and Scazzocchio, C., Nature, 254, 31–34 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Lukaszkiewicz, Z., and Paszewski, A., Nature, 259, 337–338 (1976).

    Article  ADS  CAS  Google Scholar 

  9. Hynes, M. J., and Pateman, J. A. J., Molec. gen. Genet., 108, 97–106; 107–116 (1970).

    Article  CAS  Google Scholar 

  10. Dunsmuir, P., and Hynes, M. J., Molec. gen. Genet., 123, 333–346 (1973).

    Article  CAS  Google Scholar 

  11. Hynes, M. J., and Pateman, J. A., J. gen. Microbiol., 63, 317–324 (1970).

    Article  CAS  Google Scholar 

  12. Arst, H. N., Jr, and Cove, D. J., Molec. gen. Genet., 126, 111–141 (1973).

    Article  CAS  Google Scholar 

  13. Cybis, J., Piotrowska, M., and Weglenski, P., Acta microbiol. Pol., A 4, 163–169 (1972).

    CAS  Google Scholar 

  14. Schmit, J. C., and Brody, S., J. Bact., 124, 232–242 (1975).

    CAS  PubMed  Google Scholar 

  15. Cove, D. J., Biochim. biophys. Acta, 113, 51–56 (1966).

    Article  CAS  Google Scholar 

  16. Arst, H. N., Jr, and Cove, D. J., J. Bact., 98, 1284–1293 (1969).

    CAS  PubMed  Google Scholar 

  17. Alderson, T., and Hartley, M. J., Mutat. Res., 8, 255–264 (1969).

    Article  CAS  Google Scholar 

  18. Herman, C., and Clutterbuck, A. J., Aspergillus News Lett., 7, 13–14 (1966).

    Google Scholar 

  19. Mackintosh, M. E., and Pritchard, R. H., Genet. Res., 4, 320–322 (1963).

    Article  Google Scholar 

  20. Arst, H. N., Jr, and Page, M. M., Molec. gen. Genet., 121, 239–245 (1973).

    Article  CAS  Google Scholar 

  21. Dover, S., and Halpern, Y. S., J. Bact., 109, 835–843 (1972).

    CAS  PubMed  Google Scholar 

  22. Arst, H. N., Jr, and MacDonald, D. W., Molec. gen. Genet., 122, 261–265 (1973).

    Article  CAS  Google Scholar 

  23. Arst, H. N., Jr, Parbtani, A. A. M., and Cove, D. J., Molec. gen. Genet., 138, 165–171 (1975).

    CAS  Google Scholar 

  24. Kinghorn, J. R., and Pateman, J. A., J. gen. Microbiol., 78, 39–46 (1973).

    Article  CAS  Google Scholar 

  25. Kinghorn, J. R., and Pateman, J. A., J. Bact., 125, 42–47 (1976).

    CAS  PubMed  Google Scholar 

  26. Skinner, V. M., and Armitt, S., FEBS Lett., 20, 16–18 (1972).

    Article  CAS  Google Scholar 

  27. Bailey, C., and Arst, H. N., Jr, Eur. J. Biochem., 51, 573–577 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ARST, H. Integrator gene in Aspergillus nidulans. Nature 262, 231–234 (1976). https://doi.org/10.1038/262231a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/262231a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing