Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Increased cyclic nucleotide phosphodiesterase activity in leukaemic lymphocytes

Abstract

THE intracellular concentration of cyclic AMP influences cellular proliferation and maturation in both normal and malignant tissue. For example, the concentration of cyclic AMP—changes during the cell cycle being lowest during mitosis1—is inversely related to the rate of cell growth2, and is elevated in contact-inhibited cell populations3,4. In studies of malignant tissue, the concentration of cyclic AMP is lower in cells transformed in vitro by oncogenic viruses than in untransformed cells3–5, and is lower in certain tumours grown in vivo than in the corresponding normal tissue6,7. Furthermore, in malignant cells, exogenous cyclic AMP or agents that increase the intracellular concentration of this cyclic nucleotide decrease the rate of growth8 and induce morphological and biochemical differentiation9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Burger, M. M., Bombik, B. M., Breckenridge, B. M., and Sheppard, J. R., Nature new Biol., 239, 161–163 (1972).

    Article  CAS  Google Scholar 

  2. Otten, J., Johnson, G. S., and Pastan, I., Biochem. biophys. Res. Commun., 44, 1192–1198 (1971).

    Article  CAS  Google Scholar 

  3. Otten, J., Johnson, G. S., and Pastan, I., J. biol. Chem., 247, 7082–7087 (1972).

    CAS  PubMed  Google Scholar 

  4. Bannai, S., and Sheppard, J. R., Nature, 250, 62–64 (1974).

    Article  ADS  CAS  Google Scholar 

  5. Sheppard, J. R., Nature new Biol., 236, 14–16 (1972).

    Article  CAS  Google Scholar 

  6. Hickie, R. A., Walker, C. M., and Croll, G. A., Biochem. biophys. Res. Commun., 59, 167–173 (1974).

    Article  CAS  Google Scholar 

  7. Goldberg, M. L., Burke, G. C., and Morris, H. P., Biochem. biophys. Res. Commun., 62, 320–327 (1975).

    Article  CAS  Google Scholar 

  8. Ryan, W. L., and Heidrick, M. L., Science, 162, 1484–1485 (1968).

    Article  ADS  CAS  Google Scholar 

  9. Hsie, A. W., and Puck, T. T., Proc. natn. Acad. Sci. U.S.A., 68, 358–361 (1971).

    Article  ADS  CAS  Google Scholar 

  10. Prasad, K. N., and Hsie, A. W., Nature new Biol., 233, 141–142 (1971).

    Article  CAS  Google Scholar 

  11. Hadden, J. W., Hadden, E. M., Haddox, M. K., and Goldberg, N. G., Proc. natn. Acad. Sci. U.S.A., 69, 3024–3027 (1972).

    Article  ADS  CAS  Google Scholar 

  12. Nesbitt, J., Russel, T. R., Miller, Z., and Pastan, I., Fedn. Proc., 34, 616 (1975).

    Google Scholar 

  13. Burk, R. R., Nature, 219, 1272–1275 (1968).

    Article  ADS  Google Scholar 

  14. Weiss, B., Shein, H. M., and Snyder, R., Life Sci., 10, 1253–1260 (1971).

    Article  CAS  Google Scholar 

  15. Johnson, G. S., in Cyclic Nucleotides in Disease (edit. by Weiss, B.), 35–44 (University Park Press, Baltimore, Maryland, 1975).

    Google Scholar 

  16. Strada, S., and Pledger, W. J., in Cyclic Nucleotides in Disease (edit. by Weiss, B.), 3–34 (University Park Press, Baltimore, Maryland, 1975).

    Google Scholar 

  17. Ryan, W. L., and Heidrick, M. L., in Advances in Cyclic Nucleotide Research, 4, (edit. by Greenbard, P., and Robinson, G. A.), 81–116 (Raven, New York, 1974).

    Google Scholar 

  18. Clark, J. F., Morris, H. P., and Weber, G., Cancer. Res., 33, 356–361 (1973).

    CAS  PubMed  Google Scholar 

  19. Weiss, B., Lehne, R., and Strada, S., Analyt. Biochem., 45, 222–235 (1972).

    Article  CAS  Google Scholar 

  20. Fertel, R., and Weiss, E., Analyt. Biochem., 59, 386–398 (1974).

    Article  CAS  Google Scholar 

  21. Thompson, W. J., and Appleman, M. M., J. biol. Chem., 246, 3145–3150 (1971).

    CAS  PubMed  Google Scholar 

  22. Uzunov, P., and Weiss, B., Biochim. biophys. Acta, 284, 220–226 (1972).

    Article  CAS  Google Scholar 

  23. Uzunov, P., Shein, H. M., and Weiss, B., Neuropharmacology, 13, 377–391 (1974).

    Article  CAS  Google Scholar 

  24. Kakiuchi, S., and Yamazaki, R., Biochem. biophys. Res. Commun., 41, 1104–1110 (1970).

    Article  CAS  Google Scholar 

  25. Cheung, W. Y., J. biol. Chem., 216, 2859–2869 (1971).

    Google Scholar 

  26. Yang, T. J., and Vas, S. I., Experientia, 27, 442–444 (1971).

    Article  CAS  Google Scholar 

  27. Ryan, W. L., and McClurg, J. E., in Cyclic AMP, Cell Growth and the Immune Response (edit. by Braun, W. Lichtenstein, L. M., and Parker, C. W.), 329–337 (Springer, New York, 1974).

    Book  Google Scholar 

  28. Weiss, B., Fertel, R., Figlin, R., and Uzunov, P., Molec. Pharmac., 10, 615–625 (1974).

    CAS  Google Scholar 

  29. Lowry, O., Rosebrough, N. J., Farr, A., and Randall, R., J. biol. Chem., 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  30. Hofstee, B. H. J., Science, 116, 329–331 (1952).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HAIT, W., WEISS, B. Increased cyclic nucleotide phosphodiesterase activity in leukaemic lymphocytes. Nature 259, 321–323 (1976). https://doi.org/10.1038/259321a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/259321a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing