Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ionic permeability changes occurring at excitatory receptor membranes of chemical synapses

Abstract

ALTHOUGH the ionic basis for generation of action potentials in nerve and muscle cells is now well understood1, there is still much uncertainty about the changes in ionic permeability which result in the generation of graded depolarisations at receptor membranes of excitatory chemical synapses2. The equilibrium potential for these graded depolarisations (ER) is usually between −20 and +10 mV. This suggests an underlying increase in sodium permeability (PNa) and potassium (PK) and/or chloride (PCl) permeability, for in most nerve and muscle cells, the sodium equilibrium potential (ENa) is very positive (+50 to +75 mV) and the potassium and chloride equilibrium potentials (EK and ECl) are very negative (−40 to −100 mV). There is evidence that an increase in PNa does occur during activation of excitatory synaptic membranes2, but there are few such membranes for which there is evidence for an increase in either PK or PCl. Here we review and analyse the data obtained from previous investigations on the ionic basis of the graded depolarisations occurring at excitatory synapses. We demonstrate that the application of the Goldman–Hodgkin–Katz equation3,4 to previous data suggests that an increase in PK as well as PNa probably occurs at most if not all excitatory synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Katz, B., Muscle and Synapse (McGraw Hill, New York, 1966).

    Google Scholar 

  2. Ginsborg, B. L., Biochim. biophys. Acta, 300, 289–317 (1973).

    Article  CAS  Google Scholar 

  3. Goldman, D. E., J. gen. Physiol., 27, 37–60 (1943).

    Article  CAS  Google Scholar 

  4. Hodgkin, A. L., and Katz, B., J. Physiol., Lond., 108, 37–77 (1949).

    Article  CAS  Google Scholar 

  5. Takeuchi, A., and Takeuchi, N., J. Physiol., Lond., 154, 52–67 (1960).

    Article  CAS  Google Scholar 

  6. Takeuchi, N., J. Physiol., Lond., 167, 141–155 (1963).

    Article  CAS  Google Scholar 

  7. Koketsu, K., Fedn Proc., 27, 101–112 (1969),

    Google Scholar 

  8. Ito, Y., Kuriyamu, H., and Tashiro, N., J. exp. Biol., 50, 107–118 (1969).

    Google Scholar 

  9. Chiarandini, D. J., Stefani, E., and Gerschenfeld, H. M., Science, 156, 1597–1599 (1967).

    Article  ADS  CAS  Google Scholar 

  10. Blankenship, J. E., Wachtel, H., and Kandel, E. R., J. Neurophysiol., 34, 76–92 (1971).

    Article  CAS  Google Scholar 

  11. Levitan, H., and Tauc, L., J. Physiol., Lond., 222, 537–558 (1972).

    Article  CAS  Google Scholar 

  12. Anwyl, R., and Usherwood, P. N. R., Nature, 252, 591 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Kusano, K., and Grundfest, H., J. gen. Physiol., 50, 1092 (1967).

    Article  Google Scholar 

  14. Takeuchi, A., and Onodera, K., Nature new Biol., 242, 124–126 (1973).

    Article  CAS  Google Scholar 

  15. Bolton, T. B., in Drug Receptors (edit. by Rang, H. P.), 87–104 (Macmillan, London, 1973).

    Book  Google Scholar 

  16. Gerschenfeld, H. M., Physiol. Rev., 53, 1–119 (1973).

    Article  CAS  Google Scholar 

  17. Gage, P. W., and Moore, J. W., Science, 166, 510–512 (1969).

    Article  ADS  CAS  Google Scholar 

  18. Bregestovski, P. D., Chalachjan, L. M., Dunin-Barkowsky, V. L., Potapova, T. W., and Veprintser, B. N., Nature, 235, 453–454 (1972).

    Article  ADS  Google Scholar 

  19. Takeuchi, N., J. Physiol., Lond., 167, 141–155 (1963).

    Article  CAS  Google Scholar 

  20. Ozeki, M., and Grundfest, H., Science, 155, 478–481 (1967).

    Article  ADS  CAS  Google Scholar 

  21. Ritchie, A. K., and Fambrough, D. M., J. gen. Physiol., 65, 751–769 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ANWYL, R., USHERWOOD, P. Ionic permeability changes occurring at excitatory receptor membranes of chemical synapses. Nature 257, 410–412 (1975). https://doi.org/10.1038/257410a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/257410a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing