Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interdigitated repeated sequences in bovine satellite DNA

Abstract

MOST eukayrote genomes contain some highly repeated DNA sequences. DNA hybridisation kinetic studies indicate that the smallest repeating unit of highly repetitious DNA is around 300 base pairs1 but direct sequence analysis of highly repeated DNA has demonstrated a simple basic repeating unit of 4–12 nucleotides2–5. It has been postulated that the repeated sequences have been generated by successive replications of some primary simple sequence1, 6, 7. The discrepancy between sequence data and kinetic analysis may be explained by noting that the rate of reassociation is a function of length8; this data is consistent with a model of internal heterogeneity in the repeated, simple DNA sequence units9, 10. Although the hybridisation and sequence analyses have been successful in establishing certain features of reiteirated DNA, these methods are not well suited to detect and study infrequent but regularly repeated DNA sequences interdigitated within the dominant short repeating units. The existence and nature of such interdigitated repeats are important to our understanding of the mechanism by which repeated DNA is generated. We have used site-specific endonucleases (restriction enzymes) to show that mutational events within simple sequence DNA may have been coupled with cycles of discrete replications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Britten, R. J., and Kohne, D. E., Science, 161, 529–540 (1968).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Southern, E. M., Nature, 227, 794–798 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Fry, K., Poon, R., Whitcome, P., Idriss, J., Salser, W., Mazrimas, J., and Hatch, F., Proc. natn. Acad. Sci. U.S.A., 70, 2642–2646 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Gall, J. G., and Atherton, D. D., J. molec. Biol., 85, 633–664 (1974).

    Article  CAS  PubMed  Google Scholar 

  5. Skinner, D. M., Beattie, W. G., Blattner, F. R., Stark, B. P., and Dahlberg, J. E., Biochemistry, 13, 3930–3937 (1974).

    Article  CAS  PubMed  Google Scholar 

  6. Walker, P. M. B., Prog. Biophys. molec. Biol., 23, 145–190 (1971).

    Article  CAS  Google Scholar 

  7. Sutton, W. D., and McCallum, M., J. molec. Biol., 71, 633–656 (1972).

    Article  CAS  PubMed  Google Scholar 

  8. Hutton, J. R., and Wetmur, J. G., Biochem. biophys. Res. Commun., 52, 1148–1155 (1973).

    Article  CAS  PubMed  Google Scholar 

  9. Southern, E. M., Nature new Biol., 232, 82–83 (1971).

    Article  CAS  PubMed  Google Scholar 

  10. Sutton, W. D., and McCallum, M., Nature new Biol., 232, 83–85 (1971).

    Article  CAS  PubMed  Google Scholar 

  11. Kelly, T. J., and Smith, H. O., J. molec. Biol., 51, 393–409 (1970).

    Article  CAS  PubMed  Google Scholar 

  12. Landy, A., Ruidisueli, E., Robinson, L., Foeller, C., and Ross, W., Biochemistry, 13, 2134–2142 (1974).

    Article  CAS  PubMed  Google Scholar 

  13. Mowbray, S. L., and Landy, A., J. Cell Biol., 59, 237a (1973).

    Google Scholar 

  14. Mowbray, S. L., and Landy, A., Proc. natn. Acad. Sci. U.S.A., 71, 1920–1924 (1942).

    Article  ADS  Google Scholar 

  15. Philippsen, P., Streeck, R. E., and Zachau, H. G., Eur. J. Biochem., 45, 479–488 (1974).

    Article  CAS  PubMed  Google Scholar 

  16. Botchan, M. R., Nature, 251, 288–292 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Middleton, J. H., Edgell, M. H., and Hutchison, C. A., J. Virol., 10, 42–50 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hedgepeth, J., Goodman, H. M., and Boyer, H. W., Proc. natn. Acad. Sci U.S.A., 69, 3448–3452 (1972).

    Article  ADS  Google Scholar 

  19. Roberts, R. J., Arrand, J. R., and Keller, W., Proc. natn. Acad. Sci. U.S.A., 71, 3829–3833 (1974).

    Article  ADS  CAS  Google Scholar 

  20. Takanami, M., Methods in Molecular Biology (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MOWBRAY, S., GERBI, S. & LANDY, A. Interdigitated repeated sequences in bovine satellite DNA. Nature 253, 367–370 (1975). https://doi.org/10.1038/253367a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/253367a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing