Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli

Abstract

BERG and Anderson1 recently argued from existing evidence that bacteria swim by rotation of their helical flagella. Silver-man and Simon2 have now provided a clear demonstration of this. By means of antibodies specific for flagellar components, they tethered cells to microscope slides or to each other and observed rotation of the cell bodies. The cells were able to stop and to rotate in either direction. It seemed possible, as they proposed2, that cessation, or reversal of flagellar rotation might be involved in bacterial chemotaxis. Accordingly, we used wild-type and chemotaxis-defective mutant cells of Escherichia coli tethered to microscope slides in a manner similar to that of Silverman and Simon2, and stimulated them by sudden increases of chemotactic agents. We found that changes in the direction of flagellar rotation indeed constitute the basis of chemotaxis: addition of attractants causes counter clockwise (CCW) rotation, whereas repellents cause clockwise (CW) rotation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berg, H. C., and Anderson, R. A., Nature, 245, 380–382 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Silverman, M. R., and Simon, M. I., Nature, 249, 73–74 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Pfeffer, W., Untersuch. Bot. Inst. Tübingen, 1, 363–482 (1884); ibid., 2, 582–661 (1888).

    Google Scholar 

  4. Adler, J., J. gen. Microbiol., 74, 77–91 (1973).

    Article  CAS  PubMed  Google Scholar 

  5. Berg, H. C., and Brown, D. A., Nature, 239, 500–504 (1972).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Brown, D. A., and Berg, H. C., Proc. natn. Acad. Sci. U.S.A. (in the press).

  7. Macnab, R. M., and Koshland, jr., D. E., Proc. natn. Acad. Sci. U.S.A., 69, 2509–2512 (1972).

    Article  ADS  CAS  Google Scholar 

  8. Tsang, N., Macnab, R., and Koshland, jr., D. E., Science, 181, 60–63 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Adler, J., and Templeton, B., J. gen. Microbiol., 46, 175–184 (1967).

    Article  CAS  PubMed  Google Scholar 

  10. Yokota, T., and Gots, J. S., J. Bact., 103, 513–516 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mesibov, R., and Adler, J., J. Bact., 112, 315–326 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Armstrong, J. B., Adler, J., and Dahl, M. M., J. Bact., 93, 390–398 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Armstrong, J. B., and Adler, J., Genetics, 61, 61–66 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Adler, J., Hazelbauer, G. L., and Dahl, M. M., J. Bact., 115, 824–847 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tso, W-W., and Adler, J., J. Bact. (in the press).

  16. Adler, J., Science, 166, 1588–1597 (1969).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Weibull, C., The Bacteria, 1 (edit. by Gunsalus, I. C., and Stanier, R. Y.), 153–205 (Academic Press, New York and London, 1962).

    Google Scholar 

  18. Weibull, C., Ark. Kemi, 1, 573–575 (1949).

    Google Scholar 

  19. Astbury, W. T., Beighton, E., and Weibull, C., Symp. Soc. expl. Biol., 9, 282–305 (1955).

    Google Scholar 

  20. Dimmitt, K., and Simon, M., J. Bact., 105, 369–375 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. DePamphilis, M. L., and Adler, J., J. Bact., 105, 396–407 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LARSEN, S., READER, R., KORT, E. et al. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249, 74–77 (1974). https://doi.org/10.1038/249074a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/249074a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing