Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

Bortezomib significantly impairs the immunostimulatory capacity of human myeloid blood dendritic cells

Abstract

Bortezomib is a potent drug for the treatment of multiple myeloma. Its anti-tumor activity is mediated by proteasome inhibition leading to decreased cell proliferation and induction of apoptosis. However, an unimpaired proteasomal function plays a crucial role for the induction of anti-tumor immunity by dendritic cells (DCs), which are currently used for therapeutic vaccination against various tumors including myeloma. In the present study, we investigated the impact of bortezomib on the immunostimulatory capacity of 6-sulfo LacNAc (slan) DCs, which represent a major subset of human blood DCs. We demonstrated that this proteasome inhibitor efficiently impairs the spontaneous in vitro maturation of slanDCs and the release of tumor necrosis factor (TNF)-α as well as interleukin (IL)-12 upon lipopolysaccharide (LPS) stimulation. Functional data revealed that bortezomib profoundly inhibits slanDC-induced proliferation and differentiation of CD4+ T cells. In addition, the capacity of slanDCs to promote interferon-γ secretion and tumor-directed cytotoxicity of natural killer (NK) cells is markedly impaired by bortezomib. These results provide evidence that bortezomib significantly reduces the ability of native human blood DCs to regulate innate and adaptive anti-tumor immunity and may have implications for the design of therapeutic strategies combining DC vaccination and bortezomib treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Adams J . The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004; 4: 349–360.

    Article  CAS  PubMed  Google Scholar 

  2. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003; 348: 2609–2617.

    Article  CAS  PubMed  Google Scholar 

  3. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005; 352: 2487–2498.

    Article  CAS  PubMed  Google Scholar 

  4. Cavo M . Proteasome inhibitor bortezomib for the treatment of multiple myeloma. Leukemia 2006; 20: 1341–1352.

    Article  CAS  PubMed  Google Scholar 

  5. Richardson PG, Mitsiades C, Hideshima T, Anderson KC . Bortezomib: proteasome inhibition as an effective anticancer therapy. Annu Rev Med 2006; 57: 33–47.

    Article  CAS  PubMed  Google Scholar 

  6. Nencioni A, Grünebach F, Patrone F, Ballestrero A, Brossart P . Proteasome inhibitors: antitumor effects and beyond. Leukemia 2007; 21: 30–36.

    Article  CAS  PubMed  Google Scholar 

  7. Kane RC, Farrell AT, Sridhara R, Pazdur R . United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res 2006; 12: 2955–2960.

    Article  CAS  PubMed  Google Scholar 

  8. Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001; 61: 3071–3076.

    CAS  PubMed  Google Scholar 

  9. LeBlanc R, Catley LP, Hideshima T, Lentzsch S, Mitsiades CS, Mitsiades N et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 2002; 62: 4996–5000.

    CAS  PubMed  Google Scholar 

  10. Rajkumar SV, Richardson PG, Hideshima T, Anderson KC . Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 2005; 23: 630–639.

    Article  CAS  PubMed  Google Scholar 

  11. Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T et al. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 2002; 277: 16639–16647.

    Article  CAS  PubMed  Google Scholar 

  12. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  PubMed  Google Scholar 

  13. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811.

    Article  CAS  PubMed  Google Scholar 

  14. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S . Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 2002; 20: 621–627.

    Article  CAS  PubMed  Google Scholar 

  15. Moretta A . The dialogue between human natural killer cells and dendritic cells. Curr Opin Immunol 2005; 17: 306–311.

    Article  CAS  PubMed  Google Scholar 

  16. Banchereau J, Palucka AK . Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005; 5: 296–306.

    Article  CAS  PubMed  Google Scholar 

  17. Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celuzzi C, Falo LD et al. Bone marrow-derived dendritc cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1995; 1: 1297–1302.

    Article  CAS  PubMed  Google Scholar 

  18. Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 2000; 6: 1011–1017.

    Article  CAS  PubMed  Google Scholar 

  19. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996; 2: 52–58.

    Article  CAS  PubMed  Google Scholar 

  20. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4: 328–332.

    Article  CAS  PubMed  Google Scholar 

  21. Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 1999; 190: 1669–1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wierecky J, Muller MR, Wirths S, Halder-Oehler E, Dorfel D, Schmidt SM et al. Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients. Cancer Res 2006; 66: 5910–5918.

    Article  CAS  PubMed  Google Scholar 

  23. Reichardt VL, Okada CY, Liso A, Benike CJ, Stockerl-Goldstein KE, Engleman EG et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma – a feasibility study. Blood 1999; 93: 2411–2419.

    CAS  PubMed  Google Scholar 

  24. Reichardt VL, Brossart P . Dendritic cells in clinical trials for multiple myeloma. Methods Mol Med 2005; 109: 127–136.

    CAS  PubMed  Google Scholar 

  25. Demaria S, Santori FR, Ng B, Liebes L, Formenti SC, Vukmanovic S . Select forms of tumor cell apoptosis induce dendritic cell maturation. J Leukoc Biol 2005; 77: 361–368.

    Article  CAS  PubMed  Google Scholar 

  26. Schumacher LY, Vo DD, Garban HJ, Comin-Anduix B, Owens SK, Dissette VB et al. Immunosensitization of tumor cells to dendritic cell-activated immune responses with the proteasome inhibitor bortezomib (PS-341, Velcade). J Immunol 2006; 176: 4757–4765.

    Article  CAS  PubMed  Google Scholar 

  27. Nencioni A, Garuti A, Schwarzenberg K, Cirmena G, Dal Bello G, Rocco I et al. Proteasome inhibitor-induced apoptosis in human monocyte-derived dendritic cells. Eur J Immunol 2006; 36: 681–689.

    Article  CAS  PubMed  Google Scholar 

  28. Nencioni A, Schwarzenberg K, Brauer KM, Schmidt SM, Ballestrero A, Grünebach F et al. Proteasome inhibitor bortezomib modulates TLR4-induced dendritic cell activation. Blood 2006; 108: 551–558.

    Article  CAS  PubMed  Google Scholar 

  29. Naujokat C, Berges C, Höh A, Wieczorek H, Fuchs D, Ovens J et al. Proteasomal chymotrypsin-like peptidase activity is required for essential functions of monocyte-derived dendritic cells. Immunology 2007; 120: 120–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schäkel K, Mayer E, Federle C, Schmitz M, Riethmüller G, Rieber EP . A novel dendritic cell population in human blood: one-step immunomagnetic isolation by a specific mAb (M-DC8) and in vitro priming of cytotoxic T lymphocytes. Eur J Immunol 1998; 28: 4084–4093.

    Article  PubMed  Google Scholar 

  31. Schäkel K, Kannagi R, Kniep B, Goto Y, Mitsuoka C, Zwirner J et al. 6-Sulfo LacNAc, a novel carbohydrate modification of PSGL-1, defines an inflammatory type of human dendritic cells. Immunity 2002; 17: 289–301.

    Article  PubMed  Google Scholar 

  32. Schäkel K, von Kietzell M, Hänsel A, Ebling A, Schulze L, Haase M et al. Human 6-sulfo LacNAc-expressing dendritic cells are principal producers of early interleukin-12 and are controlled by erythrocytes. Immunity 2006; 24: 767–777.

    Article  PubMed  Google Scholar 

  33. Schmitz M, Zhao S, Schäkel K, Bornhäuser M, Ockert D, Rieber EP . Native human blood dendritic cells as potent effectors in antibody-dependent cellular cytotoxicity. Blood 2002; 100: 1502–1504.

    Article  CAS  PubMed  Google Scholar 

  34. Schmitz M, Zhao S, Deuse Y, Schäkel K, Wehner R, Wöhner H et al. Tumoricidal potential of native blood dendritic cells: direct tumor cell killing and activation of NK cell-mediated cytotoxicity. J Immunol 2005; 174: 4127–4134.

    Article  CAS  PubMed  Google Scholar 

  35. Bross PF, Kane R, Farrell AT, Abraham S, Benson K, Brower ME et al. Approval summary for bortezomib for injection in the treatment of multiple myeloma. Clin Cancer Res 2004; 10: 3954–3964.

    Article  CAS  PubMed  Google Scholar 

  36. Lechmann M, Berchtold S, Hauber J, Steinkasserer A . CD83 on dendritic cells: more than just a marker for maturation. Trends Immunol 2002; 23: 273–275.

    Article  CAS  PubMed  Google Scholar 

  37. Feinman R, Hendriksen-DeStefano D, Tsujimoto M, Vilcek J . Tumor necrosis factor is an important mediator of tumor cell killing by human monocytes. J Immunol 1987; 138: 635–640.

    CAS  PubMed  Google Scholar 

  38. Trinchieri G . Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3: 133–146.

    Article  CAS  PubMed  Google Scholar 

  39. Pardoll DM, Topalian SL . The role of CD4+ T cell responses in antitumor immunity. Curr Opin Immunol 1998; 10: 588–594.

    Article  CAS  PubMed  Google Scholar 

  40. Toes RE, Ossendorp F, Offringa R, Melief CJ . CD4 T cells and their role in antitumor immune responses. J Exp Med 1999; 189: 753–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang RF . The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity. Trends Immunol 2001; 22: 269–276.

    Article  PubMed  Google Scholar 

  42. Corthay A, Skovseth DK, Lundin KU, Rosjo E, Omholt H, Hofgaard PO et al. Primary antitumor immune response mediated by CD4+ T cells. Immunity 2005; 22: 371–383.

    Article  CAS  PubMed  Google Scholar 

  43. Blanco B, Perez-Simon JA, Sanchez-Abarca LI, Carvajal-Vergara X, Mateos J, Vidriales B et al. Bortezomib induces selective depletion of alloreactive T lymphocytes and decreases the production of Th1 cytokines. Blood 2006; 107: 3575–3583.

    Article  CAS  PubMed  Google Scholar 

  44. Wehner R, Wendisch M, Schäkel K, Bornhäuser M, Platzbecker U, Mohr B et al. Imatinib mesylate does not impair the immunogenicity of human myeloid blood dendritic cells. Leukemia 2006; 20: 1629–1632.

    Article  CAS  PubMed  Google Scholar 

  45. Sun K, Welniak LA, Panoskaltsis-Mortari A, O'Shaughnessy MJ, Liu H, Barao I et al. Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci USA 2004; 101: 8120–8125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Farag SS, Fehninger TA, Ruggeri L, Velardi A, Caligiuri MA . Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 2002; 100: 1935–1947.

    Article  CAS  PubMed  Google Scholar 

  47. Woan K, Reddy V . Potential therapeutic role of natural killer cells in cancer. Expert Opin Biol Ther 2007; 7: 17–29.

    Article  CAS  PubMed  Google Scholar 

  48. Moretta L, Bottino C, Pende D, Castriconi R, Mingari MC, Moretta A . Surface NK receptors and their ligands on tumor cells. Semin Immunol 2006; 18: 151–158.

    Article  CAS  PubMed  Google Scholar 

  49. Yu Y, Hagihara M, Ando K, Gansuvd B, Matsuzawa H, Tsuchiya T et al. Enhancement of human cord blood CD34+ cell-derived NK cell cytotoxicity by dendritic cells. J Immunol 2001; 166: 1590–1600.

    Article  CAS  PubMed  Google Scholar 

  50. Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Munz C . Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 2002; 195: 343–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Frohn C, Hoppner M, Schlenke P, Kirchner H, Koritke P, Luhm J . Anti-myeloma activity of natural killer lymphocytes. Br J Haematol 2002; 119: 660–664.

    Article  CAS  PubMed  Google Scholar 

  52. Carbone E, Neri P, Mesuraca M, Fulciniti MT, Otsuki T, Pende D et al. HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood 2005; 105: 251–258.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The technical assistance of Bärbel Löbel is greatly appreciated. This work was supported by grants from the German Ministry of Education and Research and the Medical Faculty, Technical University of Dresden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Schmitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straube, C., Wehner, R., Wendisch, M. et al. Bortezomib significantly impairs the immunostimulatory capacity of human myeloid blood dendritic cells. Leukemia 21, 1464–1471 (2007). https://doi.org/10.1038/sj.leu.2404734

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404734

Keywords

This article is cited by

Search

Quick links