Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Signal transduction pathways that contribute to myeloid differentiation

Abstract

The production of mature, differentiated myeloid cells is regulated by the action of hematopoietic cytokines on progenitor cells in the bone marrow. Cytokines drive the process of myeloid differentiation by binding to specific cell-surface receptors in a stage- and lineage-specific manner. Following the binding of a cytokine to its cognate receptor, intracellular signal-transduction pathways become activated that facilitate the myeloid differentiation process. These intracellular signaling pathways may promote myelopoiesis by stimulating expansion of a progenitor pool, supporting cellular survival during the differentiation process, or by directly driving the phenotypic changes associated with differentiation. Ultimately, pathways that drive the differentiation process converge on myeloid transcription factors, including PU.1 and the C/EBP family, that are critical for differentiation to proceed. While much is known about the cytokines, cytokine receptors and transcription factors that regulate myeloid differentiation, less is known about the precise roles that specific signaling mediators play in promoting myeloid differentiation. Recently, however, the application of novel pharmacologic inhibitors, siRNA strategies, and transgenic and knockout models has begun to shed light on the involvement and function of signaling pathways in normal myeloid differentiation. This review will discuss the roles that key signaling pathways and mediators play in myeloid differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Sachs L . Constitutive uncoupling of pathways of gene expression that control growth and differentiation in myeloid leukemia: a model for the origin and progression of malignancy. Proc Natl Acad Sci USA 1980; 77: 6152–6156.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Barreda DR, Hanington PC, Belosevic M . Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol 2004; 23: 509–554.

    Google Scholar 

  3. van de Geijn GJ, Aarts LH, Erkeland SJ, Prasher JM, Touw IP . Granulocyte colony-stimulating factor and its receptor in normal hematopoietic cell development and myeloid disease. Rev Physiol Biochem Pharmacol 2003; 149: 53–71.

    CAS  PubMed  Google Scholar 

  4. de Koning JP, Soede-Bobok AA, Schelen AM, Smith L, van Leeuwen D, Santini V et al. Proliferation signaling and activation of Shc, p21Ras and Myc via tyrosine 764 of human granulocyte colony-stimulating factor receptor. Blood 1998; 91: 1924–1933.

    CAS  PubMed  Google Scholar 

  5. Boulton TG, Stahl N, Yancopoulos GD . Ciliary neurotrophic facto/leukemia inhibitory facto/interleukin 6/oncostatin M family of cytokines induces tyrosine phosphorylation of a common set of proteins overlapping those induced by other cytokines and growth factors. J Biol Chem 1994; 269: 11648–11655.

    CAS  PubMed  Google Scholar 

  6. Daeipour M, Kumar G, Amaral MC . Recombinant IL6 activates p42 and p44 mitogen-activated protein kinases in the IL-6 responsive B cell line, AF-10. J Immunol 1993; 150: 4743–4753.

    CAS  PubMed  Google Scholar 

  7. Lutticken C, Wegenka UM, Yuan J, Buschmann J, Schindler C, Ziemiecki A et al. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducter gp130. Science 1994; 263: 89–92.

    CAS  PubMed  Google Scholar 

  8. Stahl N, Boulton TG, Farruggella T, Ip NY, Davis S, Witthuhn BA et al. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 receptor components. Science 1994; 263: 92–95.

    CAS  PubMed  Google Scholar 

  9. Zhong Z, Wen Z, Darnell Jr JE . Stat3: a STAT family member activated by tryrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 1994; 264: 95–98.

    CAS  PubMed  Google Scholar 

  10. Ihle JN, Kerr I . Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet 1995; 11: 69–74.

    CAS  PubMed  Google Scholar 

  11. Tian S-S, Tapley P, Sincich C, Stein RB, Rosen J, Lamb P . Multiple signaling pathways induced by granulocyte colony-stimulating factor involving activation of JAKs, STAT5, and/or STAT3 are required for regulation of three distinct classes of immediate early genes. Blood 1996; 88: 4435–4444.

    CAS  PubMed  Google Scholar 

  12. Liu KD, Gaffen SL, Goldsmith MA . JAK/STAT signaling by cytokine receptors. Curr Opin Immunol 1998; 10: 271–278.

    CAS  PubMed  Google Scholar 

  13. Hunter MG, Avalos BR . Phosphatidylinositol 3′-kinase and SH2-containing inositol phosphatase (SHIP) are recruited by distinct positive and negative growth-regulatory domains in the granulocyte colony-stimulating factor receptor. J Immunol 1998; 160: 4979–4987.

    CAS  PubMed  Google Scholar 

  14. Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 2003; 17: 1263–1293.

    CAS  PubMed  Google Scholar 

  15. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA . JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18: 189–218.

    CAS  PubMed  Google Scholar 

  16. Ward AC, Loeb DM, Soede-Bobok AA, Touw IP, Friedman AD . Regulation of granulopoiesis by transcription factors and cytokine signals. Leukemia 2000; 14: 973–990.

    CAS  PubMed  Google Scholar 

  17. Friedman AD . Transcriptional regulation of granulocyte and monocyte development. Oncogene 2002; 21: 3377–3390.

    CAS  PubMed  Google Scholar 

  18. Koschmieder S, Rosenbauer F, Steidl U, Owens BM, Tenen DG . Role of transcription factors C/EBPalpha and PU.1 in normal hematopoiesis and leukemia. Int J Hematol 2005; 81: 368–377.

    CAS  PubMed  Google Scholar 

  19. Gupta P, Gurudutta GU, Verma YK, Kishore V, Gulati S, Sharma RK et al. PU.1: an ETS family transcription factor that regulates leukemogenesis besides normal hematopoiesis. Stem Cells Dev 2006; 15: 609–617.

    CAS  PubMed  Google Scholar 

  20. Towatari M, Iida H, Tanimoto M, Iwata H, Hamaguchi M, Saito H . Constitutive activation of mitogen-activated protein kinase pathway in acute leukemia cells. Leukemia 1997; 11: 479–484.

    CAS  PubMed  Google Scholar 

  21. Kim S-C, Hahn J-S, Min Y-H, Yoo N-C, Ko Y-W, Lee W-J . Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood 1999; 93: 3893–3899.

    CAS  PubMed  Google Scholar 

  22. Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D et al. Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 2001; 108: 851–859.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu C, Krystal G, Varticovksi L, McKinstry R, Rahmani M, Dent P et al. Pharmacologic mitogen-activated protein/extracellular signal regulated kinase kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells. Cancer Res 2002; 62: 188–199.

    CAS  PubMed  Google Scholar 

  24. Milella M, Estrov Z, Kornblau SM, Carter BZ, Konopleva M, Tari A et al. Synergistic induction of apoptosis by simultaneous disruption of the BCL-2 and MEK/MAPK pathways in acute myelogenous leukemia. Blood 2002; 99: 3461–3462.

    CAS  PubMed  Google Scholar 

  25. Hu X, Moscinski LC, Valkov NI, Fisher AB, Hill BJ, Zuckerman KS . Prolonged activation of the mitogen-activated protein kinase pathway is required for macrophage-like differentiation of a human myeloid leukemic cell line. Cell Growth Differ 2000; 11: 191–200.

    CAS  PubMed  Google Scholar 

  26. Miranda MB, McGuire TF, Johnson DE . Importance of MEK-1/-2 signaling in monocytic and granulocytic differentiation of myeloid cell lines. Leukemia 2002; 16: 683–692.

    CAS  PubMed  Google Scholar 

  27. Miranda MB, Xu H, Torchia JA, Johnson DE . Cytokine-induced myeloid differentiation is dependent on activation of the MEK/ERK pathway. Leuk Res 2005; 29: 1293–1306.

    CAS  PubMed  Google Scholar 

  28. Ihle JN . STATs: signal transducers and activators of transcription. Cell 1996; 84: 331–334.

    CAS  PubMed  Google Scholar 

  29. Takeda K, Akira S . STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev 2000; 11: 199–207.

    CAS  PubMed  Google Scholar 

  30. Darnell Jr JE . STATs and gene regulation. Science 1997; 277: 1630–1635.

    CAS  PubMed  Google Scholar 

  31. Imada K, Loenard WJ . The Jak-STAT pathway. Mol Immunol 2000; 37: 1–11.

    CAS  PubMed  Google Scholar 

  32. Williams JG . STAT signaling in cell proliferation and in development. Curr Opin Genet Dev 2000; 10: 503–507.

    CAS  PubMed  Google Scholar 

  33. Heldin CH . Dimerization of cell surface receptors in signal transduction. Cell 1995; 80: 213–223.

    CAS  PubMed  Google Scholar 

  34. Rane SG, Reddy EP . JAKs, STATs, and Src kinases in hematopoiesis. Oncogene 2002; 21: 3334–3358.

    CAS  PubMed  Google Scholar 

  35. Chaturvedi P, Reddy MV, Reddy EP . Src kinases and not JAKs activate STATs during IL-3-induced myeloid cell proliferation. Oncogene 1998; 16: 1749–1758.

    CAS  PubMed  Google Scholar 

  36. Rane SG, Reddy EP . JAK3: a novel JAK kinase associated with terminal differentiation of hematopoietic cells. Oncogene 1994; 9: 2415–2423.

    CAS  PubMed  Google Scholar 

  37. Rane SG, Mangan JK, Amanullah A, Wong BC, Vora RK, Liebermann DA et al. Activation of the Jak3 pathway is associated with granulocytic differentiation of myeloid precursor cells. Blood 2002; 100: 2753–2762.

    CAS  PubMed  Google Scholar 

  38. Mangan JK, Rane SG, Kang AD, Amanullah A, Wong BC, Reddy EP . Mechanisms associated with IL-6-induced upregulation of Jak3 and its role in monocytic differentiation. Blood 2004; 103: 4093–4101.

    CAS  PubMed  Google Scholar 

  39. Grossman WJ, Verbsky JW, Yang L, Berg LJ, Fields LE, Chaplin DD et al. Dysregulated myelopoiesis in mice lacking JAK3. Blood 1999; 94: 932–939.

    CAS  PubMed  Google Scholar 

  40. Smithgall TE, Briggs SD, Shreiner S, Lerner EC, Cheng H, Wilson MB . Control of myeloid differentiation and survival by STATs. Oncogene 2000; 19: 2612–2618.

    CAS  PubMed  Google Scholar 

  41. Coffer PJ, Koenderman L, de Groot RP . The role of STATs in myeloid differentiation and leukemia. Oncogene 2000; 19: 2511–2522.

    CAS  PubMed  Google Scholar 

  42. de Koning JP, Soede-Bobok AA, Ward AC, Schelen AM, Antonissen C, van Leeuwen D et al. STAT3-mediated differentiation and survival of myeloid cells in response to granulocyte colony-stimulating factor: role for the cyclin-dependent kinase inhibitor p27 (Kip1). Oncogene 2000; 19: 3290–3298.

    CAS  PubMed  Google Scholar 

  43. McLemore ML, Grewal S, Liu F, Archambault A, Poursine-Laurent J, Haug J et al. STAT3 activation is required for normal G-CSF-dependent proliferation and granulocytic differentiation. Immunity 2001; 14: 193–204.

    CAS  PubMed  Google Scholar 

  44. Panopoulos AD, Zhang L, Snow JW, Jones DM, Smith AM, El Kasimi C et al. STAT3 governs distinct pathways in emergency granulopoiesis and mature neutrophils. Blood 2006; 108: 3682–3690.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schaefer TS, Sanders LK, Nathans D . Cooperative transcriptional activity of Jun and STAT3 beta, a short form of Stat3. Proc Natl Acad Sci USA 1995; 92: 9097–9101.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Caldenhoven E, van Dijk TB, Solari R, Armstrong J, Raaijmakers JAM, Lammers JWJ et al. STAT3beta, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription. J Biol Chem 1996; 271: 13221–13227.

    CAS  PubMed  Google Scholar 

  47. Chakraborty A, Tweardy DJ . Granulocyte colony-stimulating factor activates a 72-kDa isoform of STAT3 in human neutrophils. J Leukoc Biol 1998; 64: 675–680.

    CAS  PubMed  Google Scholar 

  48. Chakraborty A, White SM, Schaefer TS, Ball ED, Dyer KF, Tweardy DJ . Granulocyte colony-stimulating factor activation of Stat3 alpha and Stat3 beta in immature normal and leukemic human myeloid cells. Blood 1996; 88: 2442–2449.

    CAS  PubMed  Google Scholar 

  49. Shimozaki K, Nakajima K, Hirano T, Nagata S . Involvement of STAT3 in the granulocyte colony-stimulating factor-induced differentiation of myeloid cells. J Biol Chem 1997; 272: 25184–25189.

    CAS  PubMed  Google Scholar 

  50. Chakraborty A, Tweardy DJ . Stat3 and G-CSF-induced myeloid differentiation. Leuk Lymphoma 1998; 274: 14956–14962.

    Google Scholar 

  51. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 1997; 94: 3801–3804.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Takeda K, Clausen BE, Kaisho T, Tsujimira T, Terada N, Forster I et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 1999; 10: 39–49.

    CAS  PubMed  Google Scholar 

  53. Lee CK, Raz R, Gimeno R, Gertner R, Wistinghausen B, Takeshita K et al. STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 2002; 17: 63–72.

    CAS  PubMed  Google Scholar 

  54. Minami M, Inoue M, Wei S, Takeda K, Matsumoto M, Kishimoto T et al. STAT3 activation is a critical step in the gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Proc Natl Acad Sci USA 1996; 93: 3963–3966.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakajima K, Yamanaka Y, Nakae K, Kojima H, Ichiba M, Kiuchi N et al. A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells. EMBO J 1996; 15: 3651–3658.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Numata A, Shimoda K, Kamezaki K, Haro T, Kakumitsu H, Shide K et al. Signal transducers and activators of transcription 3 augments the transcriptional activity of CCAAT/enhancer-binding protein alpha in granulocyte colony stimulating factor signaling pathway. J Biol Chem 2005; 280: 12621–12629.

    CAS  PubMed  Google Scholar 

  57. Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL, Kitamura T . STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J 1999; 18: 4754–4765.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ilaria Jr RL, Hawley RG, Van Etten RA . Dominant negative mutants implicate STAT5 in myeloid cell proliferation and neutrophil differentiation. Blood 1999; 93: 4154–4166.

    CAS  PubMed  Google Scholar 

  59. Kieslinger M, Woldman I, Moriggl R, Hofmann J, Marine JC, Ihle JN et al. Anti-apoptotic activity of Stat5 required during terminal stages of myeloid differentiation. Genes Dev 2000; 14: 232–244.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gianni M, Terao M, Fortino I, LiCalzi M, Viggiano V, Barbui T et al. Stat1 is induced and activated by all-trans retinoic acid in acute promyelocytic leukemia cells. Blood 1997; 89: 1001–1012.

    CAS  PubMed  Google Scholar 

  61. Dimberg AI, Karlberg I, Nilsson K, Oberg FG . Ser-727/Tyr 701 phosphorylated Stat1 is required for the regulation of c-Myc, cyclins, and p27Kip1 associated with ATRA-induced G0/G1 arrest of U-937 cells. Blood 2003; 102: 254–261.

    CAS  PubMed  Google Scholar 

  62. Dimberg A, Bahram F, Karlberg I, Larsson LG, Nilsson K, Oberg F . Retinoic acid-induced cell cycle arrest of human myeloid cell lines is associated with sequential down regulation of c-Myc and cyclin E and posttranscriptional upregulation of p27 (Kip1). Blood 2002; 99: 2199–2206.

    CAS  PubMed  Google Scholar 

  63. Macara IG, Lounsbury KM, Richards SA, McKiernan C, Bar-Sagi D . The Ras superfamily of GTPases. FASEB J 1996; 10: 625–630.

    CAS  PubMed  Google Scholar 

  64. Lowy DR, Willumsen BM . Function and regulation of ras. Annu Rev Biochem 1993; 62: 851–891.

    CAS  PubMed  Google Scholar 

  65. Magee T, Marshall CJ . New insights into the interaction of Ras with the plasma membrane. Cell 1999; 98: 9–12.

    CAS  PubMed  Google Scholar 

  66. Boswell HS, Nahreini TS, Burgess GS, Srivastava A, Gabig TG, Inhorn L et al. A RAS oncogene imparts growth factor independence to myeloid cells that abnormally regulate protein kinase C: a nonautocrine transformation pathway. Exp Hematol 1990; 18: 452–460.

    CAS  PubMed  Google Scholar 

  67. Uemura N, Ozawa K, Tojo A, Takahashi K, and Okano A, Karasuyama H et al. Acquisition of interleukin-3 independence in FDC-P2 cells after transfection with the acativated c-H-ras gene using a bovine papillomavirus-based plasmid vector. Blood 1992; 80: 3198–3204.

    CAS  PubMed  Google Scholar 

  68. Maher J, Baker D, Dibb N, Roberts I . Mutant ras promotes hemopoietic cell proliferation or differentiation in a cell-specific manner. Leukemia 1996; 10: 83–90.

    CAS  PubMed  Google Scholar 

  69. Zaker F, Darley RL, al Sabbah A, Burnett AK . Oncogenic RAS genes impair erythoid differentiation of erythroleukemic cells. Leuk Res 1997; 21: 635–640.

    CAS  PubMed  Google Scholar 

  70. Gallagher AP, Burnett AK, Bowen DT, Darley RL . Mutant RAS selectively promotes sensitivity of myeloid leukemia cells to apoptosis by a protein kinase C-dependent process. Cancer Res 1998; 58: 2029–2035.

    CAS  PubMed  Google Scholar 

  71. Mavilio F, Kreider BL, Valtieri M, Naso G, Shirsat N, Venturelli D et al. Alteration of growth and differentiation factors response by Kirsten and Harvey sarcoma viruses in the IL-3-dependent murine hematopoietic cell line 32Dcl3(G). Oncogene 1989; 4: 301–308.

    CAS  PubMed  Google Scholar 

  72. Delgado MD, Vaque JP, Arozarena I, Lopez-Ilasaca MA, Martinez C, Crespo P et al. H-, K- and N-Ras inhibit myeloid leukemia cell proliferation by a p21WAF1-dependent mechanism. Oncogene 2000; 19: 783–790.

    CAS  PubMed  Google Scholar 

  73. Pierce JH, Aaronson SA . Myeloid cell transformation by ras-containing murine sarcoma viruses. Mol Cell Biol 1985; 5: 667–674.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Maher J, Colonna F, Baker D, Luzzatto L, Roberts I . Retroviral-mediated gene transfer of a mutant H-ras gene into normal human bone marrow alters myeloid cell proliferation and differentiation. Exp Hematol 1994; 22: 8–12.

    CAS  PubMed  Google Scholar 

  75. Dunbar CE, Crosier PS, Nienhuis AW . Introduction of an activated RAS oncogene into murine bone marrow lymphoid progenitors via retroviral gene transfer results in thymic lymphomas. Oncogene Res 1991; 6: 39–51.

    CAS  PubMed  Google Scholar 

  76. Hawley RG, Hong AZ, Ngan BY, Hawley TS . Hematopoietic transforming potential of activated ras in chimeric mice. Oncogene 1995; 11: 1113–1123.

    CAS  PubMed  Google Scholar 

  77. MacKenzie KL, Dolnikov A, Millington M, Shounan Y, Symonds G . Mutant N-ras induces myeloproliferative disorders and apoptosis in bone marrow repopulated mice. Blood 1999; 93: 2043–2056.

    CAS  PubMed  Google Scholar 

  78. Malumbres M, Perez De Castro I, Hernandez MI, Jimenez M, Corral T, Pellicer A . Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15 (INK4b). Mol Cell Biol 2000; 20: 2915–2925.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Serrano M, Gomez-Lahoz E, DePinho RA, Beach D, Bar-Sagi D . Inhibition of ras-induced proliferation and cellular transformation by p16INK4. Science 1995; 267: 240–252.

    Google Scholar 

  80. Palmero I, Pantoja C, Serrano M . p19ARF links the tumour suppressor p53 to Ras. Nature 1998; 395: 125–126.

    CAS  PubMed  Google Scholar 

  81. Zhang Y, Xiong Y, Yarbrough WG . ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppressor pathways. Cell 1998; 92: 725–734.

    CAS  PubMed  Google Scholar 

  82. Honda R, Yasuda H . Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 1999; 18: 22–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ashcroft M, Vousden KH . Regulation of p53 stability. Oncogene 1999; 18: 7637–7643.

    CAS  PubMed  Google Scholar 

  84. el-Diery WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825.

    Google Scholar 

  85. Cheng M, Oliver P, Diehl JA, Fero M, Roussel MF, Roberts JM et al. The p21Cip1 and p27Kip1 CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 1999; 18: 1571–1583.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sewing A, Wiseman B, Lloyd AC, Land H . High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol 1997; 17: 5588–5597.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M . Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 1997; 17: 5598–5611.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Vojteck AB, Hollenberg SM, Cooper JA . Mammalian Ras interacts directly with the serine/threonine Raf. Cell 1993; 74: 205–214.

    Google Scholar 

  89. Moodie SA, Willumsen BM, Weber MJ, Wolfman A . Complexes of Ras GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 1993; 260: 1658–1661.

    CAS  PubMed  Google Scholar 

  90. Fabian JR, Daar IO, Morrison DK . Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol Cell Biol 1993; 13: 7170–7179.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Morrison DK, Heidecker G, Rapp UR, Copeland TD . Identification of the major phosphorylation sites of the Raf-1 kinase. J Biol Chem 1993; 268: 17309–17316.

    CAS  PubMed  Google Scholar 

  92. Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ . Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 1997; 272: 4378–4383.

    CAS  PubMed  Google Scholar 

  93. Daum G, Eismann-Tappe I, Fries HW, Troppmair J, Rapp UR . The ins and outs of Raf kinases. Trends Biol Sci 2000; 19: 474–480.

    Google Scholar 

  94. Marais R, Light Y, Paterson HF, Marshall CJ . Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 1995; 14: 3136–3145.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H et al. Protein kinase Cα activates RAF-1 by direct phosphorylation. Nature 1993; 364: 249–252.

    CAS  PubMed  Google Scholar 

  96. Cai H, Smola U, Wixler V, Eisenmann-Tappe I, Diaz-Meco MT, Moscat J et al. Role of diacylglycerol-regulated protein kinase C isotype in growth factor activation of the Raf-1 protein kinase. Mol Cell Biol 1997; 17: 732–741.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Dhillon AS, Pollock C, Steen H, Shaw PE, Mischak H, Kolch W . Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259. Mol Cell Biol 2002; 22: 3237–3246.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J, Barber TD et al. Negative regulation of the serine/threonine kinase B-RAF by Akt. J Biol Chem 2000; 275: 27354–27359.

    CAS  PubMed  Google Scholar 

  99. Keller JR, Ruscetti FW, Heidecker G, Linnekin DM, Rapp U, Troppmair J et al. The effect of c-raf antisense oligonucleotides on growth factor-induced proliferation of hematopoietic cells. Curr Top Microbial Immunol 1996; 211: 43–53.

    CAS  Google Scholar 

  100. Skorski T, Nieborowska-Skorska M, Szczylik C, Kanakaraj P, Perrotti D, Zon G et al. C-RAF-1 serine/threonine kinase is required in BCR-ABL- dependent and normal hematopoiesis. Cancer Res 1995; 55: 2275–2278.

    CAS  PubMed  Google Scholar 

  101. Weinstein-Oppenheimer C, Steelman LS, Algate PA, Blalock WL, Burrows C, Hoyle PE et al. Effects of deregulated Raf activation on integrin, cytokine-receptor expression and the induction of apoptosis in hematopoietic cells. Leukemia 2000; 14: 1921–1938.

    CAS  PubMed  Google Scholar 

  102. Kharbanda S, Saleem A, Emoto Y, Stone R, Rapp U, Kufe D . Activation of Raf-1 and mitogen-activated protein kinases during monocytic differentiation of human myeloid leukemia cells. J Biol Chem 1994; 269: 872–878.

    CAS  PubMed  Google Scholar 

  103. Yen A, Williams M, Platko JD, Der C, Hisaka M . Expression of activated RAF accelerates cell differentiation and RB protein down-regulation but not hypophosphorylation. Eur J Cell Biol 1994; 65: 103–113.

    CAS  PubMed  Google Scholar 

  104. Hong HY, Varvayanis S, Yen A . Retinoic acid causes MEK-dependent RAF phosphorylation through RARalpha plus RXR activation in HL-60 cells. Differentiation 2001; 68: 55–66.

    CAS  PubMed  Google Scholar 

  105. Wang X, Studzinski GP . Raf-1 signaling is required for the later stages of 1,25-dihydroxyvitamin D(3)-induced differentiation of HL-60 cells but is not mediated by the MEK/ERK module. J Cell Physiol 2006; 209: 253–260.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zheng CF, Guan KL . Cloning and characterization of two distinct human extracellular signal regulated kinase activator kinases, MEK1 and MEK2. J Biol Chem 1993; 268: 11435–11439.

    CAS  PubMed  Google Scholar 

  107. Alessi DR, Saito Y, Campbell DG, Cohen P, Sithanandam G, Rapp U et al. Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J 1994; 13: 1610–1619.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Huang W, Kessler DS, Erikson RL . Biochemical and biological analysis of Mek1 phosphorylation site mutants. Mol Biol Cell 1995; 6: 237–245.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Papin C, Eychene A, Brunet A, Pages C, Pouyssegur J, Calothey G et al. B-Raf protein isoforms interact with and phosphorylate MEK-1 on serine residues 218 and 222. Oncogene 1995; 10: 1647–1651.

    CAS  PubMed  Google Scholar 

  110. Xu S, Robbins D, Frost J, Dang A, Lange-Carter C, Cobb MH . MEKK1 phosphorylates MEK1 and MEK2 but does not cause activation of mitogen-activated protein kinase. Proc Natl Acad Sci USA 1995; 92: 6808–6812.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Herrera R, Hubbell S, Decker S, Petruzzelli L . A role for the MEK/MAPK pathway in PMA-induced cell cycle arrest: modulation of megakaryocytic differentiation of K562 cells. Exp Cell Res 1998; 238: 407–414.

    CAS  PubMed  Google Scholar 

  112. Yen A, Roberson MS, Varvayanis S, Lee AT . Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Res 1998; 58: 3163–3172.

    CAS  PubMed  Google Scholar 

  113. Wang X, Studzinski GP . Activation of extracellular signal-regulated kinases (ERKs) defines the first phase of 1,25-dihydroxyvitamin D3-induced differentiation of HL60 cells. J Cell Biochem 2001; 80: 471–482.

    CAS  PubMed  Google Scholar 

  114. Glasow A, Prodromou N, Xu K, von Lindern M, Zelent A . Retinoids and myelomonocytic growth factors cooperatively activate RARA and induce human myeloid leukemia cell differentiation via MAP kinase pathways. Blood 2005; 105: 341–349.

    CAS  PubMed  Google Scholar 

  115. Marcinkowska E, Garay E, Gocek E, Chrobak A, Wang X, Studzinski GP . Regulation of C/EBPbeta isoforms by MAPK pathways in HL-60cells induced to differentiate by 1,25-dihydroxyvitamin D3. Exp Cell Res 2006; 312: 2054–2065.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ross SE, Radomska HS, Wu B, Zhang P, Winnay JN, Bajnok L et al. Phosphorylation of C/EBPα inhibits granulopoiesis. Mol Cell Biol 2004; 24: 675–686.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Radomska HS, Basseres DS, Zheng R, Zhang P, Dayaram T, Yamamoto Y et al. Block of C/EBP alpha function by phosphorylation acute myeloid leukemias with flt3 activating mutations. J Exp Med 2006; 203: 371–381.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Tanaka T, Kurokawa M, Ueki K, Tanaka K, Imai Y, Mitani K et al. The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Mol Cell Biol 1996; 16: 3967–3979.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sanz C, Benito A, Silva M, Albella B, Richard C, Segovia JC et al. The expression of Bcl-X is downregulated during differentiation of human hematopoietic progenitor cells along the granulocytic but not the monocyte/macrophage lineage. Blood 1997; 89: 3199–3204.

    CAS  PubMed  Google Scholar 

  120. Miranda MB, Dyer KF, Grandis JR, Johnson DE . Differential activation of apoptosis regulatory pathways during monocytic versus granulocytic differentiation: a requirement for Bcl-XL and XIAP in the prolonged survival of monocytic cells. Leukemia 2003; 17: 390–400.

    CAS  PubMed  Google Scholar 

  121. English J, Pearson G, Wilsbacher J, Swantek J, Karandikar M, Xu S et al. New insights into the control of MAP kinase pathways. Exp Cell Res 1999; 253: 255–270.

    CAS  PubMed  Google Scholar 

  122. Chang L, Karin M . Mammalian MAP kinase signaling cascades. Nature 2001; 410: 37–40.

    CAS  PubMed  Google Scholar 

  123. Zarubin T, Han J . Activation and signaling of the p38 MAP kinase pathway. Cell Res 2005; 15: 11–18.

    CAS  PubMed  Google Scholar 

  124. Davis RJ . Signal transduction of the JNK group of MAP kinases. Cell 2000; 103: 239–252.

    CAS  PubMed  Google Scholar 

  125. Zhang S, Han J, Sells MA, Chernoff J, Knaus UG, Ulevitch RJ et al. Rho GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J Biol Chem 1995; 270: 23934–23936.

    CAS  PubMed  Google Scholar 

  126. Bagrodia S, Derijard B, Davis RJ, Cerione RA . Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J Biol Chem 1995; 270: 27995–27998.

    CAS  PubMed  Google Scholar 

  127. Brancho D, Ventura JJ, Jaesschke A, Doran B, Flavell RA, Davis RJ . Role of MLK3 in the regulation of mitogen-activated protein kinase signaling cascades. Mol Cell Biol 2005; 25: 3670–3681.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang X, Studzinski GP . Inhibition of p38MAP kinase potentiates the JNK/SAPK pathway and AP-1 activity in monocytic but not in macrophage or granulocytic differentiation of HL-60 cells. J Cell Biochem 2001; 82: 68–77.

    CAS  PubMed  Google Scholar 

  129. Zhang JX, Zhuang WJ, Poon KH, Yang M, Fong WF . Induction of HL-60 cell differentiation by the p38 mitogen-activated protein kinase inhibitor SB203580 is mediated through the extracellular signal-regulated kinase signaling pathway. Anticancer Drugs 2003; 14: 31–38.

    CAS  PubMed  Google Scholar 

  130. Verma A, Mohindru M, Deb DK, Sassano A, Kambhampati S, Ravandi F et al. Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to arsenic trioxide. J Biol Chem 2002; 277: 44988–44995.

    CAS  PubMed  Google Scholar 

  131. Giafis N, Katsoulidis E, Sassano A, Tallman MS, Higgins LS, Nebreda AR et al. Role of the p38 mitogen-activated protein kinase pathway in the generation of arsenic trioxide-dependent cellular responses. Cancer Res 2006; 66: 6763–6771.

    CAS  PubMed  Google Scholar 

  132. Wang X, Rao J, Studzinski GP . Inhibition of p38 MAP kinase activity upregualtes multiple MAP kinase pathways and potentiates 1,25-dihydroxyvitamin D3-induced differentiation of human leukemia HL60 cells. Exp Cell Res 2000; 258: 425–437.

    CAS  PubMed  Google Scholar 

  133. Kohmura K, Miyakawa Y, Kawai Y, Ikeda Y, Kizaki M . Different roles of p38 MAPK and ERK in STI571-induced multi-lineage differentiation of K562 cells. J Cell Physiol 2004; 198: 370–376.

    CAS  PubMed  Google Scholar 

  134. Williamson EA, Williamson IK, Chumakov AM, Friedman AD, Koeffler HP . CCAAT/enhancer binding protein epsilon: changes in function upon phosphorylation by p38 MAP kinase. Blood 2005; 105: 3841–3847.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Verma A, Deb DK, Sassano A, Uddin S, Varga J, Wickrema A et al. Activation of the p38 mitogen-activated protein kinase mediates the suppressive effects of type I interferons and transforming growth factor-beta on normal hematopoiesis. J Biol Chem 2002; 277: 7726–7735.

    CAS  PubMed  Google Scholar 

  136. Ito Y, Mishra NC, Yoshida K, Kharbanda S, Saxena S, Kufe D . Mitochondrial targeting of JNK/SAPK in the phorbol ester response of myeloid leukemia cells. Cell Death Differ 2001; 8: 794–800.

    CAS  PubMed  Google Scholar 

  137. Wang Q, Harrison JS, Uskokovic M, Kuyner A, Studzinski GP . Translational study of vitamin D differentiation therapy of myeloid leukemia: effects of the combination with a p38 MAPK inhibitor and an antioxidant. Leukemia 2005; 19: 1812–1817.

    CAS  PubMed  Google Scholar 

  138. Rausch O, Marshall CJ . Tyrosine 763 of the murine granulocyte colony-stimulating factor receptor mediates Ras-dependent activation of the JNK/SAPK mitogen-activated protein kinase pathway. Mol Cell Biol 1997; 17: 1170–1179.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Newton AC . Regulation of protein kinase C. Curr Opin Cell Biol 1997; 9: 161–167.

    CAS  PubMed  Google Scholar 

  140. Hass R, Prudovsky I, Kruhoffer M . Differential effects of phorbol ester on signaling and gene expression in human leukemia cells. Leuk Res 1997; 21: 589–594.

    CAS  PubMed  Google Scholar 

  141. Pandey P, Nakazawa A, Ito Y, Datta R, Kharbanda S, Kufe D . Requirement for caspase activation in monocytic differentiation of myeloid leukemia cells. Oncogene 2000; 19: 3941–3947.

    CAS  PubMed  Google Scholar 

  142. Meinhardt G, Roth J, Hass R . Activation of protein kinase C relays distinct signaling pathways in the same cell type: differentiation and caspase-mediated apoptosis. Cell Death Differ 2000; 7: 795–803.

    CAS  PubMed  Google Scholar 

  143. Macfarlane DE, Manzel L . Activation of beta-isozyme of protein kinase C (PKC beta) is necessary and sufficient for phorbol-ester-induced differentiation of HL-60 promyelocytes. Studies with PKC beta-defective PET mutant. J Biol Chem 1994; 269: 4327–4331.

    CAS  PubMed  Google Scholar 

  144. Deshpande RV, Peterson RH, Moore MA . Granulocyte colony-stimulating factor-induced activation of protein kinase-C in myeloid cells. J Cell Biochem 1997; 66: 286–296.

    CAS  PubMed  Google Scholar 

  145. Behre G, Singh SM, Liu H, Bortolin LT, Christopeit M, Radomska HS et al. Ras signaling enhances the activity of C/EBP alpha to induce granulocytic differentiation by phosphorylation of serine 248. J Biol Chem 2002; 277: 26293–26299.

    CAS  PubMed  Google Scholar 

  146. Kambhampati S, Li Y, Verma A, Sassano A, Majchrzak B, Deb DK et al. Activation of protein kinase C delta by all-trans retinoic acid. J Biol Chem 2003; 278: 32544–32551.

    CAS  PubMed  Google Scholar 

  147. Kovanen PE, Junttila I, Takaluoma K, Saharinen P, Valmu L, Li W et al. Regulation of Jak2 tyrosine kinase by protein kinase C during macrophage differentiation of IL-3-dependent myeloid progenitor cells. Blood 2000; 95: 1626–1632.

    CAS  PubMed  Google Scholar 

  148. Mischak H, Pierce JH, Goodnight J, Kazanietz MG, Blumberg PM, Mushinski JF . Phorbol ester-induced myeloid differentiation is mediated by protein kinase C-alpha and -delta and not by protein kinase C-beta II, -epsilon, -zeta, and -eta. J Biol Chem 1993; 268: 20110–20115.

    CAS  PubMed  Google Scholar 

  149. Noti JD, Rienemann BC, Johnson AK . The leukocyte integrins are regulated by transcriptional and post-transcriptional mechanisms in a leukemic cell that overexpress protein kinase C-zeta. Int J Oncol 2001; 19: 1311–1318.

    CAS  PubMed  Google Scholar 

  150. Shearman MS, Heyworth CM, Dexter TM, Haefner B, Owen PJ, Whetton AD . Hematopoietic stem cell development to neutrophils is associated with subcellular redistribution and differential expression of protein kinase C subspecies. J Cell Sci 1993; 104: 173–180.

    CAS  PubMed  Google Scholar 

  151. Whetton AD, Heyworth CM, Nicholls SE, Evans CA, Lord JM, Dexter TM et al. Cytokine-mediated protein kinase C activation is a signal for lineage determination in bipotential granulocyte macrophage colony-forming cells. J Cell Biol 1994; 125: 651–659.

    CAS  PubMed  Google Scholar 

  152. Nicholls SE, Heyworth CM, Dexter TM, Lord JM, Johnson GD, Whetton AD . IL-4 promotes macrophage development by rapidly stimulating lineage restriction of bipotent granulocyte-macrophage colony-forming cells. J Immunol 1995; 155: 845–853.

    CAS  PubMed  Google Scholar 

  153. Rossi F, McNagny M, Smith G, Frampton J, Graf T . Lineage commitment of transformed hematopoietic progenitors is determined by the level of PKC activity. EMBO J 1996; 15: 1894–1901.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Vijapurkar U, Fischbach N, Shen W, Brandts C, Stokoe D, Lawrence HJ et al. Protein kinase C-mediated phosphorylation of the leukemia-associated HOXA9 protein impairs its DNA binding ability and induces myeloid differentiation. Mol Cell Biol 2004; 24: 3827–3837.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Thomas SM, Brugge JS . Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 1997; 13: 513–609.

    CAS  PubMed  Google Scholar 

  156. Veillette A, Bookman MA, Horak EM, Samelson LE, Bolen JB . Signal transduction through the CD4 receptor involves the activation of the internal membrane tyrosine-protein kinase p56lck. Nature 1990; 338: 257–259.

    Google Scholar 

  157. Dymecki SM, Niederhuber KE, Desiderio SV . Specific expression of a tyrosine kinase gene blk in B lymphoid cells. Science 1992; 247: 332–336.

    Google Scholar 

  158. Willman CL, Stewart CC, Lonacre TL, Head DR, Habbersett R, Ziegler SF et al. Expression of the c-fgr and hck protein-tyrosine kinases in acute myeloid leukemic blasts is associated with early commitment and differentiation events in the monocytic and granulocytic lineages. Blood 1991; 77: 726–734.

    CAS  PubMed  Google Scholar 

  159. Johnson LN, Noble MLM, Owen DJ . Active and inactive protein kinases: structural basis for regulation. Cell 1996; 85: 149–158.

    CAS  PubMed  Google Scholar 

  160. Wolven A, Okamura H, Rosenblatt Y, Resh MD . Palmitoylation of p59fyn is reversible and sufficient for plasma membrane association. Mol Cell Biol 1997; 8: 1159–1173.

    CAS  Google Scholar 

  161. Cooper JA, Gould KL, Cartwright CA, Hunter T . Tyr527 is phosphorylated in pp60c-src: implications for regulation. Science 1986; 231: 1431–1434.

    CAS  PubMed  Google Scholar 

  162. Roskoski Jr R . Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Comm 2005; 331: 1–14.

    CAS  PubMed  Google Scholar 

  163. Bromann PA, Korkaya H, Courtneidge SA . The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 2004; 23: 7957–7968.

    CAS  PubMed  Google Scholar 

  164. Luttrell DK, Luttrell LM . Not so strange bedfellows: G-protein coupled receptors and Src family kinases. Oncogene 2004; 23: 7969–7978.

    CAS  PubMed  Google Scholar 

  165. Goi T, Shipitsin M, Lu Z, Foster DA, Klinz SG, Feig LA . An EGF receptor/Ral-GTPase signaling cascade regulates c-Src activity and substrate specificity. EMBO J 2000; 19: 623–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang SQ, Yang W, Kontaridis MI, Bivona TG, Wen G, Araki T et al. Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling CSK recruitment. Mol Cell Biol 2004; 13: 341–355.

    Google Scholar 

  167. Cao W, Lutrell LM, Medvedev AV, Pierce K, Daniel KW, Dixon TM et al. Direct binding of activated c-Src to the beta 3-adrenergic receptor is required for MAP kinase activation. J Bio Chem 2000; 275: 38131–38134.

    CAS  Google Scholar 

  168. Ma YC, Huang J, Ali S, Lowry W, Huang XY . Src tyrosine kinase is a novel direct effector of G proteins. Cell 2000; 102: 635–646.

    CAS  PubMed  Google Scholar 

  169. Daub H, Weiss FU, Wallasch C, Ullrich A . Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 1996; 379: 557–560.

    CAS  PubMed  Google Scholar 

  170. Luttrell LM, Della Rocca GJ, van Biesen T, Luttrell DK, Lefkowitz RJ . Gbetagamma subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein-coupled receptor-mediated Ras activation. J Biol Chem 1997; 272: 4637–4644.

    CAS  PubMed  Google Scholar 

  171. Blake RA, Broome MA, Liu X, Wu J, Gishizky M, Sun L et al. SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol Cell Biol 2000; 20: 9018–9027.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Wang YZ, Wharton W, Garcia R, Kraker A, Jove R, Pledger WJ . Activation of Stat3 preassembled with platelet-derived growth factor beta receptors requires Src kinase activity. Oncogene 2000; 19: 2075–2085.

    CAS  PubMed  Google Scholar 

  173. Kazansky AV, Rosen JM . Signal transducers and activators of transcription 5B potentiates v-Src-mediated transformation of NIH-3T3 cells. Cell Growth Differ 2001; 12: 1–7.

    CAS  PubMed  Google Scholar 

  174. Kloth MT, Laughlin KK, Biscardi JS, Boerner JL, Parsons SJ, Silva CM . STAT5b, a mediator of synergism between c-Src and the epidermal growth factor receptor. J Biol Chem 2003; 278: 1671–1679.

    CAS  PubMed  Google Scholar 

  175. Ptasznik R, Traynor-Kaplan A, Bokoch GM . G protein-coupled chemoattractant receptors regulate Lyn tyrosine kinase Shc adaptor protein signaling complexes. J Biol Chem 1995; 270: 19969–19973.

    CAS  PubMed  Google Scholar 

  176. Li B, Subleski M, Fusaki N, Yamamoto T, Copeland T, Princler GL et al. Catalytic activity of the mouse guanine nucleotide exchanger mSOS is activated by Fyn tyrosine protein kinase and the T cell antigen receptor in T cells. Proc Natl Acad Sci USA 1996; 93: 1001–1005.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Bivona TG, Perez De Castro I, Ahearn IM, Grana TM, Chiu VK, Lockyer PJ et al. Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 2003; 424: 694–698.

    CAS  PubMed  Google Scholar 

  178. Playford MP, Schaller MD . The interplay between Src and integrins in normal and tumor biology. Oncogene 2004; 23: 7928–7946.

    CAS  PubMed  Google Scholar 

  179. Li W, Yu JC, Michieli P, Beeler JF, Ellmore N, Heidaran MA et al. Stimulation of the platelet-derived growth factor beta receptor signaling pathway activates protein kinase C-delta. Mol Cell Biol 1994; 14: 6727–6735.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Joseloff E, Cataisson C, Aamodt H, Ocheni H, Blumberg P, Kraker AJ et al. Src family kinases phosphorylate protein kinase C delta on tyrosine residues and modify the neoplastic phenotype of skin keratinocytes. J Biol Chem 2002; 277: 12318–12323.

    CAS  PubMed  Google Scholar 

  181. Corey S, Eguinoa A, Puyana-Theall K, Bolen JB, Cantley L, Mollinedo F et al. Granulocyte macrophage-colony stimulating factor stimulates both association and activation of phosphoinositide 3OH-kinase and src-related tyrosine kinase(s) in human myeloid derived cells. EMBO J 1993; 12: 2681–2690.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Jucker M, Feldman RA . Identification of a new adapter protein that may link the common beta subunit of the receptor for granulocyte/macrophage colony-stimulating factor, interleukin (IL)-3, and IL-5 to phosphatidylinositol 3-kinase. J Biol Chem 1995; 270: 27817–27822.

    CAS  PubMed  Google Scholar 

  183. Kassenbrock CK, Hunter S, Garl P, Johnson GL, Anderson SM . Inhibition of Src family kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-Cbl, and ubiquitination of the EGF receptor. J Biol Chem 2002; 277: 24967–24975.

    CAS  PubMed  Google Scholar 

  184. Biscardi JS, Ishizawar RC, Silva CM, Parsons SJ . Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res 2000; 2: 203–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Hansen K, Johnell M, Siegbahn A, Rorsman C, Engstrom U, Wernstedt C et al. Mutation of a Src phosphorylation site in the PDGF beta-receptor leads to increased PDGF-stimulated chemotaxis but decreased mitogenesis. EMBO J 1996; 15: 5299–5313.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Lennartsson J, Wernstedt C, Engstrom U, Hellman U, Ronnstrand L . Identification of Tyr900 in the kinase domain of c-Kit as a Src-dependent phosphorylation site mediating interaction with c-Crk. Exp Cell Res 2003; 288: 110–118.

    CAS  PubMed  Google Scholar 

  187. Peterson JE, Jelinek T, Kaleko M, Siddle K, Weber MJ . C phosphorylation and activation of the IGF-I receptor in src-transformed cells. J Biol Chem 1994; 269: 27315–27321.

    CAS  PubMed  Google Scholar 

  188. Wilde A, Beattie EC, Lem L, Riethof DA, Liu SH, Mobley WC et al. EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 1999; 96: 677–687.

    CAS  PubMed  Google Scholar 

  189. Ahn S, Kim J, Lucaveche CL, Reedy MC, Luttrell LM, Lefkowitz RJ et al. Src-dependent tyrosine phosphorylation regulates dynamin self-assembly and ligand-induced endocytosis of the epidermal growth factor receptor. J Biol Chem 2002; 277: 26642–26651.

    CAS  PubMed  Google Scholar 

  190. Katagiri K, Yokoyama KK, Yamamoto T, Omura S, Irie S, Katagiri T . Lyn and Fgr protein-tyrosine kinases prevent apoptosis during retinoic-acid-induced granulocytic differentiation. J Biol Chem 1996; 271: 11557–11562.

    CAS  PubMed  Google Scholar 

  191. Gee CE, Griffin J, Sastre L, Miller LJ, Springer TA, Piwinica-Worms H et al. Differentiation of myeloid cells is accompanied by increased levels of pp60c−src protein and kinase activity. Proc Natl Acad Sci USA 1986; 83: 5131–5135.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Broudy VC, Lin NL, Liles WC, Corey SJ, O'Laughlin B, Mou S et al. Signaling via Src family kinases is required for normal internalization of the receptor c-Kit. Blood 1999; 94: 1979–1986.

    CAS  PubMed  Google Scholar 

  193. Linnekin D . Early signaling pathways activated by c-kit in hematopoietic cells. Int J Biochem Cell Biol 1999; 31: 1053–1074.

    CAS  PubMed  Google Scholar 

  194. Anderson SM, Carroll PM, Lee FD . Abrogation of IL-3 dependent growth requires a functional v-src gene product: evidence for an autocrine growth cycle. Oncogene 1990; 5: 317–325.

    CAS  PubMed  Google Scholar 

  195. English BK . Expression of the activated (Y501-F501) hck tyrosine kinase in 32Dcl3 myeloid cells prolongs survival in the absence of IL-3 and blocks granulocytic differentiation in response to G-CSF. J Leukoc Biol 1996; 60: 667–673.

    CAS  PubMed  Google Scholar 

  196. Grishin A, Sinha S, Roginskaya V, Boyer MJ, Gomez-Cambronero J, Zuo S et al. Involvement of Shc and Cbl-PI 3-kinase in Lyn-dependent proliferative signaling pathways for G-CSF. Oncogene 2000; 19: 97–105.

    CAS  PubMed  Google Scholar 

  197. Zhu QS, Robinson LJ, Roginskaya V, Corey SJ . G-CSF-induced tyrosine phosphorylation of Gab2 is Lyn kinase dependent and associated with enhanced Akt and differentiative, not proliferative, responses. Blood 2004; 103: 3305–3312.

    CAS  PubMed  Google Scholar 

  198. Corey SJ, Dombrosky-Ferlan PM, Zuo S, Krohn E, Donnenberg AD, Zorich P et al. Requirement of Src kinase Lyn for induction of DNA synthesis by granulocyte colony-stimulating factor. J Biol Chem 1998; 273: 3230–3235.

    CAS  PubMed  Google Scholar 

  199. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    CAS  PubMed  Google Scholar 

  200. Kieslinger M, Woldman I, Moriggl R, Hoffman J, Marine JC, Ihle JN et al. Anti-apoptotic activity of Stat5 required during terminal stages of myeloid differentiation. Genes Dev 2000; 14: 232–244.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Harder KW, Parsons LM, Armes J, Evans N, Kountouri N, Clark R et al. Gain- and loss-of-function Lyn mutant mice define a critical inhibitory role for Lyn in the myeloid lineage. Immunity 2001; 15: 603–615.

    CAS  PubMed  Google Scholar 

  202. Mermel CH, McLemore ML, Liu F, Pereira S, Woloszynek J, Lowell CA et al. Src family kinases are important negative regulators of G-CSF-dependent granulopoiesis. Blood 2006; 108: 2562–2568.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Lowell CA, Fumagalli L, Berton G . Deficiency of Src family kinases p59/hck and p58c-fgr results in defective adhesion-dependent neutrophils functions. J Cell Biol 1996; 133: 895–910.

    CAS  PubMed  Google Scholar 

  204. Lowell CA, Niwa M, Soriano P, Varmus HE . Deficiency of the Hck and Src tyrosine kinases results in extreme levels of extramedullary hematopoiesis. Blood 1996; 87: 1780–1792.

    CAS  PubMed  Google Scholar 

  205. Soriano P, Montgomery C, Geske R, Bradley A . Targeted disruption of the c-src proto-oncogene leads to osteoporosis in mice. Cell 1991; 64: 693–702.

    CAS  PubMed  Google Scholar 

  206. Moscai A, Ligeti E, Lowell CA, Berton G . Adhesion-dependent degranulation of neutrophils requires the Src family kinases Fgr and Hck. J Immunol 1999; 162: 1120–1126.

    Google Scholar 

  207. Lowell CA, Soriano O, Varmus HE . Functional overlap in the src gene family: inactivation of hck and fgr impairs natural immunity. Genes Dev 1994; 8: 387–398.

    CAS  PubMed  Google Scholar 

  208. Stein P, Vogel H, Soriano P . Combined deficiencies of Src, Fyn, and Yes tyrosine kinases in mutant mice. Genes Dev 1994; 8: 1999–2007.

    CAS  PubMed  Google Scholar 

  209. Meng F, Lowell CA . Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. J Exp Med 1997; 185: 1661–1670.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Fitzer-Attas CJ, Lowry M, Crowley MT, Finn AJ, Meng F, DeFranco AL et al. Fcgamma receptor-mediated phagocytosis in macrophages lacking the Src family tyrosine kinases Hck, Fgr, and Lyn. J Exp Med 2000; 191: 669–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Cantley LC . The phosphoinositide 3-kinase pathway. Science 2002; 296: 1655–1657.

    CAS  PubMed  Google Scholar 

  212. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD . Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2001; 17: 615–675.

    CAS  PubMed  Google Scholar 

  213. Gaidarov I, Smith ME, Domin J, Keen JH . The class II phosphoinositide 3-kinase C2a is activated by clathrin and regulates clathrin-mediated membrane trafficking. Mol Cell 2001; 7: 443–449.

    CAS  PubMed  Google Scholar 

  214. Byfield MP, Murray JT, Backer JM . hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 2005; 280: 33076–33082.

    CAS  PubMed  Google Scholar 

  215. Wurmser AE, Emr SD . Novel PtdIns3(P)-binding protein Etf1 functions as an effector the Vps34 PtdIns 3-kinase in autophagy. J Cell Biol 2002; 158: 761–772.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Pleiman CM, Hertz WM, Cambier JC . Activation of phosphatidylinositol-3′kinase by Src-family kinase SH3 binding to the p85 subunit. Science 1994; 263: 1609–1612.

    CAS  PubMed  Google Scholar 

  217. Wang J, Auger KR, Jarvis L, Shi Y, Roberts TM . Direct association of Grb2 with the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem 1995; 270: 12774–12780.

    CAS  PubMed  Google Scholar 

  218. Soltoff SP, Cantley LC . P120Cbl is a cytosolic adapter protein that associates with phosphoinositide 3-kinase in response to epidermal growth factor in PC12 and other cells. J Biol Chem 1996; 271: 563–567.

    CAS  PubMed  Google Scholar 

  219. Vanhaesebroeck B, Alessi DR . The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 2000; 346: 561–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Nicolson KM, Anderson NG . The protein kinase B/Akt signaling pathway in human malignancy. Cell Signal 2002; 14: 381–395.

    Google Scholar 

  221. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of Bad couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    CAS  PubMed  Google Scholar 

  222. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 1318–1321.

    CAS  PubMed  Google Scholar 

  223. Brunet A, Bommi A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phsophorylating and inhibiting a forkhead transcription factor. Cell 1999; 96: 857–868.

    CAS  PubMed  Google Scholar 

  224. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB . NF-kappaB activation by tumor necrosis factor requires the Akt serine–threonine kinase. Nature 1999; 401: 82–85.

    CAS  PubMed  Google Scholar 

  225. Fukumoto S, Hsieh CM, Maemura K, Layne MD, Yet SF, Lee KH et al. Akt participation in the Wnt signaling pathway through Dishevelled. J Biol Chem 2001; 276: 17479–17483.

    CAS  PubMed  Google Scholar 

  226. Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC . HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosaphorylation. Nat Cell Biol 2001; 3: 973–982.

    CAS  PubMed  Google Scholar 

  227. De Mesquita DD, Zhan Q, Crossley L, Badwey JA . p90-RSK and Akt may promote rapid phosphorylation/inactivation of glycogen synthase kinase 3 in chemoattractant-stimulated neutrophils. FEBS Lett 2001; 502: 84–88.

    CAS  PubMed  Google Scholar 

  228. Dong F, Larner AC . Activation of Akt kinase by granulocyte colony-stimulating factor (G-CSF): evidence for the role of a tyrosine kinase activity distinct from Janus kinases. Blood 2000; 95: 1656–1662.

    CAS  PubMed  Google Scholar 

  229. Shelton JG, Steelman LS, Lee JT, Knapp SL, Blalock WL, Moye PW et al. Effects of the RAF/MEK/ERK and PI3K/AKT signal transduction pathways on the abrogation of cytokine-dependence and prevention of apoptosis in hematopoietic cells. Oncogene 2003; 22: 2478–2492.

    CAS  PubMed  Google Scholar 

  230. Blalock WL, Navolanic PM, Steelman LS, Shelton JG, Moye PW, Lee JT et al. Requirement for the PI3K/Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia. Leukemia 2003; 17: 1058–1067.

    CAS  PubMed  Google Scholar 

  231. Shelton JG, Blalock WL, White ER, Steelman LS, McCubrey JA . Ability of the activated PI3K/Akt oncoproteins to synergize with MEK1 and induce cell cycle progression and abrogate the cytokine-dependence of hematopoietic cells. Cell Cycle 2004; 3: 503–512.

    CAS  PubMed  Google Scholar 

  232. Lal L, Li Y, Smith J, Sassano A, Uddin S, Parmar S et al. Activation of the p70 S6 kinase by all-trans-retinoic acid in acute promyelocytic leukemia cells. Blood 2005; 105: 1669–1677.

    CAS  PubMed  Google Scholar 

  233. Zhang Y, Zhang Z, Studzinski GP . AKT pathway is activated by 1,25-dihydroxyvitamin D3 and participates in its anti-apoptotic effect and cell cycle control in differentiating HL-60 cells. Cell Cycle 2006; 5: 447–451.

    CAS  PubMed  Google Scholar 

  234. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. PTEN maintains hematopoietic stem cells and acts in lineage choice and leukemia prevention. Nature 2006; 441: 518–522.

    CAS  PubMed  Google Scholar 

  235. Fortunel NO, Hatzfeld A, Hatzfeld JA . Transforming growth factor-beta: pleiotropic role in the regulation of hematopoiesis. Blood 2000; 96: 2022–2036.

    CAS  PubMed  Google Scholar 

  236. Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB . Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem 1983; 258: 7155–7160.

    CAS  PubMed  Google Scholar 

  237. Frolik CA, Dart LL, Meyers CA, Smith DM, Sporn MB . Purification and initial characterization of a type beta transforming growth factor from human placenta. Proc Natl Acad Sci USA 1983; 80: 3676–3680.

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Roberts AB, Anzano MA, Meyers CA, Wideman J, Blacher R . Purification and properties of a type beta transforming growth factor from bovine kidney. Biochemistry 1983; 22: 5692–5698.

    CAS  PubMed  Google Scholar 

  239. Wang XF, Lin HY, Ng-eaton E, Downward J, Lodish HF, Weinberg RA . Expression cloning and characterization of the TGF-β type III receptor. Cell 1991; 67: 797–805.

    CAS  PubMed  Google Scholar 

  240. Lin HY, Wang XF, Ng-eaton E, Downward J, Lodish HF . Expression cloning of the TGF-β type II receptor, a functional transmembrane serine/threonine kinase. Cell 1992; 68: 775–785.

    CAS  PubMed  Google Scholar 

  241. Franzen P, Ten Dijke P, Ichijo H, Yamashita H, Schulz P, Heldin C-H et al. Cloning of a TGFβ type I receptor that forms a heteromeric complex with the TGF-β type II receptor. Cell 1993; 75: 1–20.

    Google Scholar 

  242. Wrana JL, Attisano L . MAD-related proteins in TGF-b signaling. Trends Genet 1996; 12: 493–496.

    CAS  PubMed  Google Scholar 

  243. Zhang Y, Feng XH, Wu RY, Derynck R . Receptor-associated Mad homologues synergize as effectors of the TGF-β response. Nature 1996; 383: 168–172.

    CAS  PubMed  Google Scholar 

  244. Macias-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL . MADR2 is a substrate of the TGFβ receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 1996; 87: 1215–1224.

    CAS  PubMed  Google Scholar 

  245. Liu F, Hata A, Baker JC, Doody J, Carcamo J, Harland RM et al. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 1996; 381: 620–623.

    CAS  PubMed  Google Scholar 

  246. Yang YC, Pick E, Zavadil J, Liang D, Xie D, Heyer J et al. Hierarchical model of gene regulation by transforming growth factor beta. Proc Natl Acad Sci USA 2003; 100: 10269–10274.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Chen Y, Bhushan A, Vale W . Smad8 mediates the signaling of the ALK-2 [corrected] receptor serine kinase. Proc Natl Acad Sci USA 1997; 94: 12938–12943.

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M et al. Smad6 inhibits signalling by the TGF-beta superfamily. Nature 1997; 389: 622–626.

    CAS  PubMed  Google Scholar 

  249. Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signaling. Nature 1997; 389: 631–635.

    CAS  PubMed  Google Scholar 

  250. Pardali K, Kurisaki A, Moren A, Dijke PT, Kardassis D, Moustakas A . Role of Smad proteins and transcription factor Sp1 in p21WAF/Cip regulation by transforming growth factor-beta. J Biol Chem 2000; 275: 29244–29256.

    CAS  PubMed  Google Scholar 

  251. Ducos K, Karterne B, Fortunel N, Hatzfeld A, Monier MN, Hatzfeld J . p21cip1 mRNA is controlled by endogenous transforming growth factor-beta 1 in quiescent human hematopoietic stem/progenitor cells. J Cell Physiol 2000; 184: 80–85.

    CAS  PubMed  Google Scholar 

  252. Ottmann OG, Pelus LM . Differential proliferative effects of transforming growth factor-β on human hematopoietic progenitor cells. J Immunol 1988; 140: 2661–2665.

    CAS  PubMed  Google Scholar 

  253. Keller JR, Jacobsen SEW, Sill K, Ellingsworth L, Ruscetti FW . Stimulation of granulopoiesis by transforming growth factor β: synergy with granulocyte-macrophage colony-stimulating factor. Proc Natl Acad Sci USA 1991; 88: 7190–7194.

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Keller JR, Bartelmez SH, Sitnicka E, Ruscetti FW, Ortiz M, Gooya JM et al. Distinct and overlapping direct effects of macrophage inflammatory protein-1 and transforming growth factor β on hematopoietic progenitor/stem cell growth. Blood 1994; 84: 2175–2181.

    CAS  PubMed  Google Scholar 

  255. Bruno E, Horrigan SK, Van Den Berg D, Rozler E, Fitting PR, Moss ST et al. The Smad5 gene is involved in the intracellular signaling pathways that mediate the inhibitory effects of transforming growth factor-beta on human hematopoiesis. Blood 1998; 91: 1917–1923.

    CAS  PubMed  Google Scholar 

  256. Singbrant S, Moody JL, Blank U, Karlsson G, Umans L, Zwijsen A et al. Smad5 is dispensable for adult hematopoiesis. Blood 2006; 108: 3707–3712.

    CAS  PubMed  Google Scholar 

  257. Bhatia M, Bonnet D, Wu D, Murdoch B, Wrana JL, Gallacher L et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J Exp Med 1999; 189: 1139–1148.

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Chadwick K, Shojaei F, Gallacher L, Bhatia M . Smad7 alters cell fate decisions of human hematopoietic repopulating cells. Blood 2005; 105: 1905–1915.

    CAS  PubMed  Google Scholar 

  259. Blank U, Karlsson G, Moody JL, Utsugisawa T, Magnusson M, Singbrant S et al. Smad7 promotes self-renewal of hematopoietic stem cells in vivo. Blood 2006; 108: 4246–4254.

    CAS  PubMed  Google Scholar 

  260. Turley JM, Falk LA, Ruscetti FW, Kasper JJ, Francomano T, Fu T et al. Transforming growth factor beta 1 functions in monocytic differentiation of hematopoietic cells through autocrine and paracrine mechanisms. Cell Growth Differ 1996; 7: 1535–1544.

    CAS  PubMed  Google Scholar 

  261. Verlinden L, Verstuyf A, Mathieu C, Tan BK, Bouillon R . Differentiation induction of HL-60 cells by 1,25(OH)2D3, all trans retinoic acid, rTGF-beta2 and their combinations. J Steroid Biochem Mol Biol 1997; 60: 87–97.

    CAS  PubMed  Google Scholar 

  262. Defacque H, Piquemal D, Basset A, Marti J, Commes T . Transforming growth factor-beta1 is an autocrine mediator of U937 cell growth arrest and differentiation induced by vitamin D3 and retinoids. J Cell Physiol 1999; 178: 109–119.

    CAS  PubMed  Google Scholar 

  263. Falk LA, De Benedetti F, Lohrey N, Birchenall-Roberts MC, Ellingsworth LW, Faltynek CR et al. Induction of transforming growth factor-beta 1 (TGF-beta 1), receptor expression and TGF-beta 1 protein production in retinoic acid-treated HL-60 cells: possible TGF-beta 1-mediated autocrine inhibition. Blood 1991; 77: 1248–1255.

    CAS  PubMed  Google Scholar 

  264. Nunes I, Kojima S, Rifkin DB . Effects of endogenously activated transforming growth factor-beta on growth and differentiation of retinoic acid-treated HL-60 cells. Cancer Res 1996; 56: 495–499.

    CAS  PubMed  Google Scholar 

  265. Omay SB, Nishikawa M, Morita K, Toyoda H, Nakai K, Shima H et al. Decreased expression of protein phosphatase type 2A in HL-60 variant (HL-60RAr) cells resistant to induction of cell differentiation by all-trans retinoic acid. Exp Hematol 1995; 23: 244–251.

    CAS  PubMed  Google Scholar 

  266. Zhu T, Matsuzawa S, Mizuno Y, Kamibayashi C, Mumby MC, Andjelkovic N et al. The interconversion of protein phosphatase 2A between PP2A1 and PP2A0 during retinoic acid-induced granulocytic differentiation and a modification on the catalytic subunit in S phase of HL-60 cells. Arch Biochem Biophys 1997; 339: 210–217.

    CAS  PubMed  Google Scholar 

  267. Cao Z, Flanders KC, Bertolette D, Lyakh LA, Wurthner JU, Parks WT et al. Levels of phospho-Smad2/3 are sensors of the interplay between effects of TGF-beta and retinoic acid on monocytic and granulocytic differentiation of HL-60 cells. Blood 2003; 101: 498–507.

    CAS  PubMed  Google Scholar 

  268. Kluiver J, Kroesen B-J, Poppema S, van den Berg A . The role of microRNAs in normal hematopoiesis and hematopoietic malignancies. Leukemia 2006; 20: 1931–1936.

    CAS  PubMed  Google Scholar 

  269. Shivdasani R . MicroRNAs: regulators of gene expression and cell differentiation. Blood 2006; 108: 3646–3653.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant R01 CA108904 to DEJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M B Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miranda, M., Johnson, D. Signal transduction pathways that contribute to myeloid differentiation. Leukemia 21, 1363–1377 (2007). https://doi.org/10.1038/sj.leu.2404690

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404690

Keywords

This article is cited by

Search

Quick links