Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloid Leukemia, BCR/ABL Studies and Myeloproliferative Disorders

hTERT, the catalytic component of telomerase, is downregulated in the haematopoietic stem cells of patients with chronic myeloid leukaemia

Abstract

Telomere shortening is associated with disease progression in chronic myeloid leukaemia (CML). To investigate the biology and regulation of telomerase in CML, we evaluated expression of the telomerase components, its regulators and several telomeric-associated proteins. Quantitative real-time-polymerase chain reaction (PCR) was used to compare gene expression in the CD34+/leukaemic blast cells of 22 CML patient samples to the CD34+ cell population of healthy individuals. hTERT, the catalytic component of telomerase, was downregulated in eight of 12 chronic phase (CP) patients (P=0.0387). Furthermore, hTERT was significantly downregulated in two of three patients in accelerated phase (AP) and seven of seven patients in blast crisis (BC), P=0.0017. Expression of hTR and telomeric-associated proteins TEP1, TRF1, TRF2, tankyrase and PinX1 was high in the majority of CP and AP patients. With the exceptions of TEP1 and hTR, expression of these factors was highest in CP and decreased during disease progression. Expression of c-Myc, a positive regulator of hTERT transcription, correlated with hTERT expression and decreased with disease progression, falling below control levels in BC. hTERT levels were increased in CP patients following successful treatment with imatinib, relative to untreated CP patients. We suggest that reduced hTERT expression directly causes the shortened telomeres observed in CML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Shet AS, Jahagirdar BN, Verfaillie CM . Chronic myelogenous leukemia: mechanisms underlying disease progression. Leukemia 2002; 16: 1402–1411.

    Article  CAS  Google Scholar 

  2. Rowley JD . Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293.

    Article  CAS  Google Scholar 

  3. Kantarjian HM, Keating MJ, Talpaz M, Walters RS, Smith TL, Cork A et al. Chronic myelogenous leukemia in blast crisis. Analysis of 242 patients. Am J Med 1987; 83: 445–454.

    Article  CAS  Google Scholar 

  4. Martin PJ, Najfeld V, Hansen JA, Penfold GK, Jacobson RJ, Fialkow PJ . Involvement of the B-lymphoid system in chronic myelogenous leukaemia. Nature 1980; 287: 49–50.

    Article  CAS  Google Scholar 

  5. Allouche M, Bourinbaiar A, Georgoulias V, Consolini R, Salvatore A, Auclair H et al. T cell lineage involvement in lymphoid blast crisis of chronic myeloid leukemia. Blood 1985; 66: 1155–1161.

    CAS  PubMed  Google Scholar 

  6. Schuh AC, Sutherland DR, Horsfall W, Mills GB, Dube I, Baker MA et al. Chronic myeloid leukemia arising in a progenitor common to T cells and myeloid cells. Leukemia 1990; 4: 631–636.

    CAS  PubMed  Google Scholar 

  7. Calabretta B, Perrotti D . The biology of CML blast crisis. Blood 2004; 103: 4010–4022.

    Article  CAS  Google Scholar 

  8. Mughal TI, Goldman JM . Chronic myeloid leukemia: current status and controversies. Oncology (Huntington) 2004; 18: 837–844, 847; discussion 847–850, 853–834.

    Google Scholar 

  9. Blackburn EH . Structure and function of telomeres. Nature 1991; 350: 569–573.

    Article  CAS  Google Scholar 

  10. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 1988; 85: 6622–6626.

    Article  CAS  Google Scholar 

  11. Greider CW, Blackburn EH . Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985; 43 (Part 1): 405–413.

    Article  CAS  Google Scholar 

  12. Greider CW, Blackburn EH . The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 1987; 51: 887–898.

    Article  CAS  Google Scholar 

  13. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–2015.

    Article  CAS  Google Scholar 

  14. Harley CB, Futcher AB, Greider CW . Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345: 458–460.

    Article  CAS  Google Scholar 

  15. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM . Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 1994; 91: 9857–9860.

    Article  CAS  Google Scholar 

  16. Smogorzewska A, de Lange T . Regulation of telomerase by telomeric proteins. Annu Rev Biochem 2004; 73: 177–208.

    Article  CAS  Google Scholar 

  17. Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP et al. The RNA component of human telomerase. Science 1995; 269: 1236–1241.

    Article  CAS  Google Scholar 

  18. Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997; 277: 955–959.

    Article  CAS  Google Scholar 

  19. Harrington L, McPhail T, Mar V, Zhou W, Oulton R, Bass MB et al. A mammalian telomerase-associated protein. Science 1997; 275: 973–977.

    Article  CAS  Google Scholar 

  20. Nakayama J, Tahara H, Tahara E, Saito M, Ito K, Nakamura H et al. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nat Genet 1998; 18: 65–68.

    Article  CAS  Google Scholar 

  21. Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt SE et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 1997; 17: 498–502.

    Article  CAS  Google Scholar 

  22. Counter CM, Meyerson M, Eaton EN, Ellisen LW, Caddle SD, Haber DA et al. Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase. Oncogene 1998; 16: 1217–1222.

    Article  CAS  Google Scholar 

  23. Poole JC, Andrews LG, Tollefsbol TO . Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). Gene 2001; 269: 1–12.

    Article  CAS  Google Scholar 

  24. Aisner DL, Wright WE, Shay JW . Telomerase regulation: not just flipping the switch. Curr Opin Genet Dev 2002; 12: 80–85.

    Article  CAS  Google Scholar 

  25. Bieche I, Nogues C, Paradis V, Olivi M, Bedossa P, Lidereau R et al. Quantitation of hTERT gene expression in sporadic breast tumors with a real-time reverse transcription-polymerase chain reaction assay. Clin Cancer Res 2000; 6: 452–459.

    CAS  PubMed  Google Scholar 

  26. de Kok JB, van Balken MR, Roelofs RW, van Aarssen YA, Swinkels DW, Klein Gunnewiek JM . Quantification of hTERT mRNA and telomerase activity in bladder washings of patients with recurrent urothelial cell carcinomas. Clin Chem 2000; 46: 2003–2007.

    CAS  PubMed  Google Scholar 

  27. Dome JS, Chung S, Bergemann T, Umbricht CB, Saji M, Carey LA et al. High telomerase reverse transcriptase (hTERT) messenger RNA level correlates with tumor recurrence in patients with favorable histology Wilms' tumor. Cancer Res 1999; 59: 4301–4307.

    CAS  PubMed  Google Scholar 

  28. Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J et al. Direct activation of TERT transcription by c-MYC. Nat Genet 1999; 21: 220–224.

    Article  CAS  Google Scholar 

  29. Kyo S, Takakura M, Taira T, Kanaya T, Itoh H, Yutsudo M et al. Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res 2000; 28: 669–677.

    Article  CAS  Google Scholar 

  30. Zhou XZ, Lu KP . The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell 2001; 107: 347–359.

    Article  CAS  Google Scholar 

  31. Lin J, Blackburn EH . Nucleolar protein PinX1p regulates telomerase by sequestering its protein catalytic subunit in an inactive complex lacking telomerase RNA. Genes Dev 2004; 18: 387–396.

    Article  CAS  Google Scholar 

  32. Smith S, Giriat I, Schmitt A, de Lange T . Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 1998; 282: 1484–1487.

    Article  CAS  Google Scholar 

  33. Cook BD, Dynek JN, Chang W, Shostak G, Smith S . Role for the related poly(ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol Cell Biol 2002; 22: 332–342.

    Article  CAS  Google Scholar 

  34. Smith S, de Lange T . Tankyrase promotes telomere elongation in human cells. Curr Biol 2000; 10: 1299–1302.

    Article  CAS  Google Scholar 

  35. van Steensel B, Smogorzewska A, de Lange T . TRF2 protects human telomeres from end-to-end fusions. Cell 1998; 92: 401–413.

    Article  CAS  Google Scholar 

  36. Shay JW, Bacchetti S . A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33: 787–791.

    Article  CAS  Google Scholar 

  37. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC . Telomere reduction in human colorectal carcinoma and with ageing. Nature 1990; 346: 866–868.

    Article  CAS  Google Scholar 

  38. Gertler R, Rosenberg R, Stricker D, Friederichs J, Hoos A, Werner M et al. Telomere length and human telomerase reverse transcriptase expression as markers for progression and prognosis of colorectal carcinoma. J Clin Oncol 2004; 22: 1807–1814.

    Article  CAS  Google Scholar 

  39. Ohyashiki JH, Ohyashiki K, Fujimura T, Kawakubo K, Shimamoto T, Iwabuchi A et al. Telomere shortening associated with disease evolution patterns in myelodysplastic syndromes. Cancer Res 1994; 54: 3557–3560.

    CAS  PubMed  Google Scholar 

  40. Artandi SE, DePinho RA . A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr Opin Genet Dev 2000; 10: 39–46.

    Article  CAS  Google Scholar 

  41. Bechter OE, Eisterer W, Pall G, Hilbe W, Kuhr T, Thaler J . Telomere length and telomerase activity predict survival in patients with B cell chronic lymphocytic leukemia. Cancer Res 1998; 58: 4918–4922.

    CAS  PubMed  Google Scholar 

  42. Sieglova Z, Zilovcova S, Cermak J, Rihova H, Brezinova D, Dvorakova R et al. Dynamics of telomere erosion and its association with genome instability in myelodysplastic syndromes (MDS) and acute myelogenous leukemia arising from MDS: a marker of disease prognosis? Leuk Res 2004; 28: 1013–1021.

    Article  CAS  Google Scholar 

  43. Boultwood J, Fidler C, Shepherd P, Watkins F, Snowball J, Haynes S et al. Telomere length shortening is associated with disease evolution in chronic myelogenous leukemia. Am J Hematol 1999; 61: 5–9.

    Article  CAS  Google Scholar 

  44. Boultwood J, Peniket A, Watkins F, Shepherd P, McGale P, Richards S et al. Telomere length shortening in chronic myelogenous leukemia is associated with reduced time to accelerated phase. Blood 2000; 96: 358–361.

    CAS  PubMed  Google Scholar 

  45. Brummendorf TH, Holyoake TL, Rufer N, Barnett MJ, Schulzer M, Eaves CJ et al. Prognostic implications of differences in telomere length between normal and malignant cells from patients with chronic myeloid leukemia measured by flow cytometry. Blood 2000; 95: 1883–1890.

    CAS  PubMed  Google Scholar 

  46. Bock O, Serinsoz E, Schlue J, Kreipe H . Different expression levels of the telomerase catalytic subunit hTERT in myeloproliferative and myelodysplastic diseases. Leuk Res 2004; 28: 457–460.

    Article  CAS  Google Scholar 

  47. Ohyashiki K, Ohyashiki JH, Iwama H, Hayashi S, Shay JW, Toyama K . Telomerase activity and cytogenetic changes in chronic myeloid leukemia with disease progression. Leukemia 1997; 11: 190–194.

    Article  CAS  Google Scholar 

  48. Tatematsu K, Nakayama J, Danbara M, Shionoya S, Sato H, Omine M et al. A novel quantitative ‘stretch PCR assay’, that detects a dramatic increase in telomerase activity during the progression of myeloid leukemias. Oncogene 1996; 13: 2265–2274.

    CAS  PubMed  Google Scholar 

  49. Verstovsek S, Kantarjian H, Manshouri T, Cortes J, Faderl S, Giles FJ et al. Increased telomerase activity is associated with shorter survival in patients with chronic phase chronic myeloid leukemia. Cancer 2003; 97: 1248–1252.

    Article  CAS  Google Scholar 

  50. Yamada M, Tsuji N, Nakamura M, Moriai R, Kobayashi D, Yagihashi A et al. Down-regulation of TRF1, TRF2 and TIN2 genes is important to maintain telomeric DNA for gastric cancers. Anticancer Res 2002; 22 (6A): 3303–3307.

    CAS  PubMed  Google Scholar 

  51. Drummond MW, Hoare SF, Monaghan A, Graham SM, Alcorn MJ, Keith WN et al. Dysregulated expression of the major telomerase components in leukaemic stem cells. Leukemia 2005; 19: 381–389.

    Article  CAS  Google Scholar 

  52. Colgin LM, Wilkinson C, Englezou A, Kilian A, Robinson MO, Reddel RR . The hTERTalpha splice variant is a dominant negative inhibitor of telomerase activity. Neoplasia 2000; 2: 426–432.

    Article  CAS  Google Scholar 

  53. Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA et al. Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol 1995; 155: 3711–3715.

    CAS  PubMed  Google Scholar 

  54. Bitisik O, Yavuz S, Yasasever V, Dalay N . Telomerase activity in patients with chronic myeloid leukemia and lymphoma. Res Commun Mol Pathol Pharmacol 2000; 107: 3–12.

    CAS  PubMed  Google Scholar 

  55. Broccoli D, Young JW, de Lange T . Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci USA 1995; 92: 9082–9086.

    Article  CAS  Google Scholar 

  56. Li G, Song YH, Qian LS, Ma XT, Wu KF . Telomerase: obviously activated in the accelerated phase of chronic myeloid leukemia. Haematologica 2000; 85: 1222–1224.

    CAS  PubMed  Google Scholar 

  57. Bakalova R, Ohba H, Zhelev Z, Kubo T, Fujii M, Ishikawa M et al. Antisense inhibition of Bcr-Abl/c-Abl synthesis promotes telomerase activity and upregulates tankyrase in human leukemia cells. FEBS Lett 2004; 564: 73–84.

    Article  CAS  Google Scholar 

  58. Avilion AA, Piatyszek MA, Gupta J, Shay JW, Bacchetti S, Greider CW . Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues. Cancer Res 1996; 56: 645–650.

    CAS  PubMed  Google Scholar 

  59. Blasco MA, Rizen M, Greider CW, Hanahan D . Differential regulation of telomerase activity and telomerase RNA during multi-stage tumorigenesis. Nat Genet 1996; 12: 200–204.

    Article  CAS  Google Scholar 

  60. Xu D, Gruber A, Peterson C, Pisa P . Telomerase activity and the expression of telomerase components in acute myelogenous leukaemia. Br J Haematol 1998; 102: 1367–1375.

    Article  CAS  Google Scholar 

  61. Hoang-Vu C, Boltze C, Gimm O, Poremba C, Dockhorn-Dworniczak B, Kohrle J et al. Expression of telomerase genes in thyroid carcinoma. Int J Oncol 2002; 21: 265–272.

    CAS  PubMed  Google Scholar 

  62. Wu A, Ichihashi M, Ueda M . Correlation of the expression of human telomerase subunits with telomerase activity in normal skin and skin tumors. Cancer 1999; 86: 2038–2044.

    Article  CAS  Google Scholar 

  63. Koyanagi Y, Kobayashi D, Yajima T, Asanuma K, Kimura T, Sato T et al. Telomerase activity is down regulated via decreases in hTERT mRNA but not TEP1 mRNA or hTERC during the differentiation of leukemic cells. Anticancer Res 2000; 20 (2A): 773–778.

    CAS  PubMed  Google Scholar 

  64. Sagawa Y, Nishi H, Isaka K, Fujito A, Takayama M . The correlation of TERT expression with c-myc expression in cervical cancer. Cancer Lett 2001; 168: 45–50.

    Article  CAS  Google Scholar 

  65. Latil A, Vidaud D, Valeri A, Fournier G, Vidaud M, Lidereau R et al. htert expression correlates with MYC over-expression in human prostate cancer. Int J Cancer 2000; 89: 172–176.

    Article  CAS  Google Scholar 

  66. Fujimoto K, Takahashi M . Telomerase activity in human leukemic cell lines is inhibited by antisense pentadecadeoxynucleotides targeted against c-myc mRNA. Biochem Biophys Res Commun 1997; 241: 775–781.

    Article  CAS  Google Scholar 

  67. van Steensel B, de Lange T . Control of telomere length by the human telomeric protein TRF1. Nature 1997; 385: 740–743.

    Article  CAS  Google Scholar 

  68. Karlseder J, Smogorzewska A, de Lange T . Senescence induced by altered telomere state, not telomere loss. Science 2002; 295: 2446–2449.

    Article  CAS  Google Scholar 

  69. Brummendorf TH, Ersoz I, Hartmann U, Balabanov S, Wolke H, Paschka P et al. Normalization of previously shortened telomere length under treatment with imatinib argues against a preexisting telomere length deficit in normal hematopoietic stem cells from patients with chronic myeloid leukemia. Ann NY Acad Sci 2003; 996: 26–38.

    Article  Google Scholar 

  70. Neumann F, Teutsch N, Kliszewski S, Bork S, Steidl U, Brors B et al. Gene expression profiling of Philadelphia chromosome (Ph)-negative CD34+ hematopoietic stem and progenitor cells of patients with Ph-positive CML in major molecular remission during therapy with imatinib. Leukemia 2005; 19: 458–460.

    Article  CAS  Google Scholar 

  71. Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 1992; 11: 1921–1929.

    Article  CAS  Google Scholar 

  72. Zhu J, Wang H, Bishop JM, Blackburn EH . Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc Natl Acad Sci USA 1999; 96: 3723–3728.

    Article  CAS  Google Scholar 

  73. Liu J, Baykal A, Fung KM, Thompson-Lanza JA, Hoque A, Lippman SM et al. Human telomerase reverse transcriptase mRNA is highly expressed in normal breast tissues and down-regulated in ductal carcinoma in situ. Int J Oncol 2004; 24: 879–884.

    CAS  PubMed  Google Scholar 

  74. Klapper W, Krams M, Qian W, Janssen D, Parwaresch R . Telomerase activity in B-cell non-Hodgkin lymphomas is regulated by hTERT transcription and correlated with telomere-binding protein expression but uncoupled from proliferation. Br J Cancer 2003; 89: 713–719.

    Article  CAS  Google Scholar 

  75. Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 1999; 96: 701–712.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Kay Kendall Leukaemia Fund and the Leukaemia Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Boultwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, L., Fidler, C., Eagleton, H. et al. hTERT, the catalytic component of telomerase, is downregulated in the haematopoietic stem cells of patients with chronic myeloid leukaemia. Leukemia 20, 671–679 (2006). https://doi.org/10.1038/sj.leu.2404141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404141

Keywords

This article is cited by

Search

Quick links