Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Apoptosis

CD44 ligation induces apoptosis via caspase- and serine protease-dependent pathways in acute promyelocytic leukemia cells

Abstract

We have recently reported that ligation of the CD44 cell surface antigen with A3D8 monoclonal antibody (mAb) triggers incomplete differentiation and apoptosis of the acute promyelocytic leukemia (APL)-derived NB4 cells. The present study characterizes the mechanisms underlying the apoptotic effect of A3D8 in NB4 cells. We show that A3D8 induces activation of both initiator caspase-8 and -9 and effector caspase-3 and -7 but only inhibition of caspase-3/7 and caspase-8 reduces A3D8-induced apoptosis. Moreover, A3D8 induces mitochondrial alterations (decrease in mitochondrial membrane potential ΔΨm and cytochrome c release), which are reduced by caspase-8 inhibitor, suggesting that caspase-8 is primarily involved in A3D8-induced apoptosis of NB4 cells. However, the apoptotic process is independent of TNF-family death receptor signalling. Interestingly, the general serine protease inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF) decreases A3D8-induced apoptosis and when combined with general caspase inhibitor displays an additive effect resulting in complete prevention of apoptosis. These results suggest that both caspase-dependent and serine protease-dependent pathways contribute to A3D8-induced apoptosis. Finally, A3D8 induces apoptosis in all-trans-retinoic acid-resistant NB4-derived cells and in APL primary blasts, characterizing the A3D8 anti-CD44 mAb as a novel class of apoptosis-inducing agent in APL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Mistry AR, Pedersen EW, Solomon E, Grimwade D . The molecular pathogenesis of acute promyelocytic leukemia: implications for the clinical management of the disease. Blood Rev 2003, 71–97.

  2. de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A . The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991; 66: 675–684.

    Article  Google Scholar 

  3. Kakizuka A, Miller Jr WH, Umesono K, Warrell Jr RP, Frankel SR, Murty VV et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell 1991; 66: 63–674.

    Article  Google Scholar 

  4. Fenaux P, Chomienne C, Degos L . All-trans retinoic acid and chemotherapy in the treatment of acute promyelocytic leukemia. Semin Hematol 2001; 38: 13–25.

    Article  CAS  Google Scholar 

  5. Tallman MS, Nabhan C, Feusner JH, Rowe JM . Acute promyelocytic leukemia: evolving therapeutic strategies. Blood 2002; 99: 759–767.

    Article  CAS  Google Scholar 

  6. Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 1996; 88: 1052–1061.

    CAS  PubMed  Google Scholar 

  7. Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 1997; 89: 3345–3353.

    CAS  PubMed  Google Scholar 

  8. Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 1998; 339: 1341–1348.

    Article  CAS  Google Scholar 

  9. Niu C, Yan H, Yu T, Sun HP, Liu JX, Li XS et al. Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood 1999; 94: 3315–3324.

    CAS  PubMed  Google Scholar 

  10. Rojewski MT, Korper S, Schrezenmeier H . Arsenic trioxide therapy in acute promyelocytic leukemia and beyond: from bench to bedside. Leukemia Lymphoma 2004; 45: 2387–2401.

    Article  CAS  Google Scholar 

  11. Charrad RS, Gadhoum Z, Qi J, Glachant A, Allouche M, Jasmin C et al. Effects of anti-CD44 monoclonal antibodies on differentiation and apoptosis of human myeloid cell lines. Blood 2002; 99: 290–299.

    Article  CAS  Google Scholar 

  12. Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, Berger R . NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 1991; 77: 1080–1086.

    CAS  PubMed  Google Scholar 

  13. Roussel MJS, Lanotte M . Maturation sensitive and resistant t(15;17) NB4 cell lines as tools for APL physiopathology: nomenclature of cells and repertory of their known genetic alterations and phenotypes. Oncogene 2001; 20: 7287–7291.

    Article  CAS  Google Scholar 

  14. Charrad RS, Li Y, Delpech B, Balitrand N, Clay D, Jasmin C, Chomienne C et al. Ligation of the CD44 adhesion molecule reverses blockage of differentiation in human acute myeloid leukemia. Nat Med 1999; 5: 669–676.

    Article  CAS  Google Scholar 

  15. Poindessous-Jazat V, Augery-Bourget Y, Robert-Lézénès J . c-Jun modulates apoptosis but not terminal cell differentiation in murine erythroleukemia cells. Leukemia 2002; 16: 233–243.

    Article  CAS  Google Scholar 

  16. Hafid-Medheb K, Augery-Bourget Y, Minatchy M-N, Hanania N, Robert-Lézénès J . Bcl-XL is required for heme synthesis during the chemical induction of erythroid differentiation of murine erythroleukemia cells independently of its anti-apoptotic function. Blood 2003; 101: 2575–2583.

    Article  Google Scholar 

  17. Petit PX, Lecoeur H, Zorn E, Dauguet C, Mignotte B, Gougeon M-L . Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol 1995; 130: 157–167.

    Article  CAS  Google Scholar 

  18. Adrain C, Creagh EM, Martin SJ . Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J 2001; 20: 6627–6636.

    Article  CAS  Google Scholar 

  19. Hafid-Medheb K, Poindessous-Jazat V, Augery-Bourget Y, Hanania N, Robert-Lézénès J . Bcl-XL induction during terminal differentiation of Friend erythroleukemia cells correlates with delay of apoptosis and loss of proliferative capacity but not with hemoglobinization. Cell Death Differ 1999; 6: 166–174.

    Article  CAS  Google Scholar 

  20. Gadhoum Z, Leibovitch MP, Qi J, Dumenil D, Durand L, Leibovitch S et al. CD44: a new means to inhibit acute myeloid leukemia cell proliferation via p27Kip1. Blood 2004; 103: 1059–1068.

    Article  CAS  Google Scholar 

  21. Nicholson DW . Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 1999; 6: 1028–1042.

    Article  CAS  Google Scholar 

  22. Sun X-M, MacFarlane M, Zhuang J, Wolf BB, Green DR, Cohen GM . Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem 1999; 274: 5053–5060.

    Article  CAS  Google Scholar 

  23. Kitamura K, Minami Y, Yamamoto K, Akao Y, Kiyoi H, Saito H et al. Involvement of CD95-independent caspase-8 activation in arsenic trioxide-induced apoptosis. Leukemia 2000; 14: 1743–1750.

    Article  CAS  Google Scholar 

  24. Cai X, Shen YL, Zhu Q, Jia PM, Yu Y, Zhou L et al. Arsenic trioxide-induced apoptosis and differentiation are associated respectively with mitochondrial transmembrane potential collapse and retinoic acid signaling pathways in acute promyelocytic leukemia. Leukemia 2000; 14: 262–270.

    Article  CAS  Google Scholar 

  25. Peter ME, Krammer PH . The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 2003; 10: 26–35.

    Article  CAS  Google Scholar 

  26. Johnson DE . Noncaspase proteases in apoptosis. Leukemia 2000; 14: 1695–1703.

    Article  CAS  Google Scholar 

  27. Stenson-Cox C, FitzGerald U, Samali A . In the cut and thrust of apoptosis, serine proteases come of age. Biochem Pharmacol 2003; 66: 1469–1474.

    Article  CAS  Google Scholar 

  28. Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H . Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med 2001; 7: 680–686.

    Article  CAS  Google Scholar 

  29. Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT . Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J Biol Chem 1999; 274: 7987–7992.

    Article  CAS  Google Scholar 

  30. von Haefen C, Wieder T, Essmann F, Schulze-Osthoff K, Dörken B, Daniel PT . Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial loop. Oncogene 2003; 22: 2236–2247.

    Article  CAS  Google Scholar 

  31. Jing Y, Dai J, Chalmers-Redman RME, Tatton WG, Waxman S . Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 1999; 94: 2102–2111.

    CAS  PubMed  Google Scholar 

  32. Mologni L, Ponzanelli I, Bresciani F, Sardiello G, Bergamaschi D, Gianni M, Reichert U et al. The novel synthetic retinoid 6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) causes apoptosis in acute promyelocytic leukemia cells through rapid activation of caspases. Blood 1999; 93: 1045–1061.

    CAS  PubMed  Google Scholar 

  33. Kawamura C, Kizaki M, Fukuchi Y, Ikeda Y . A metal chelator, diphenylthiocarbazone, induces apoptosis in acute promyelocytic leukemia (APL) cells mediated by a caspase-dependent pathway without a modulation of retinoic acid signaling pathways. Leukemia Res 2002; 26: 661–668.

    Article  CAS  Google Scholar 

  34. Scholz C, Wieder T, Starck L, Essmann F, Schulze-Osthoff K, Dorken B et al. Arsenic trioxide triggers a regulated form of caspase-independent necrotic cell death via the mitochondrial death pathway. Oncogene 2005; 24: 1904–1913.

    Article  CAS  Google Scholar 

  35. Egger L, Schneider J, Rheme C, Tapernoux M, Hacki J, Borner C . Serine proteases mediate apoptosis-like cell death and phagocytosis under caspase-inhibiting conditions. Cell Death Differ 2003; 10: 1188–1203.

    Article  CAS  Google Scholar 

  36. Grassilli E, Ballabeni A, Maellaro E, Del Bello B, Helin K . Loss of MYC confers resistance to doxorubicin-induced apoptosis by preventing the activation of multiple serine protease- and caspase-mediated pathways. J Biol Chem 2004; 279: 21318–21326.

    Article  CAS  Google Scholar 

  37. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R . A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 2001; 8: 613–621.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Association NRB-Vaincre le Cancer, the Leukemia-Lymphoma Society of America, the Fondation de France and the Association pour la Recherche sur le Cancer (ARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Robert-Lézénès.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maquarre, E., Artus, C., Gadhoum, Z. et al. CD44 ligation induces apoptosis via caspase- and serine protease-dependent pathways in acute promyelocytic leukemia cells. Leukemia 19, 2296–2303 (2005). https://doi.org/10.1038/sj.leu.2403944

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403944

Keywords

This article is cited by

Search

Quick links