Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Lymphoma

Signaling via the anti-CD30 mAb SGN-30 sensitizes Hodgkin's disease cells to conventional chemotherapeutics

Abstract

SGN-30, a monoclonal antibody with activity against CD30+ malignancies, is currently in phase II clinical evaluation for treatment of Hodgkin's disease (HD) and anaplastic large cell lymphoma. The mechanisms underlying SGN-30's antitumor activity were investigated using cDNA array of L540 cells. SGN-30 treatment activated NF-κB and modulation of several messages including the growth regulator p21WAF1/CIP1 (p21) and cellular adhesion marker ICAM-1. p21 protein levels increased coincident with growth arrest and Annexin V/PI staining in treated HD cells. To determine if SGN-30-induced growth arrest would sensitize tumor cells to chemotherapeutics used against HD, L540cy and L428 cells were exposed to SGN-30 in combination with a panel of cytotoxic agents and resultant interactions quantified by the Combination Effects Method. Interactions between SGN-30 and all cytotoxic agents examined were additive or better. These in vitro data translated to increased efficacy of SGN-30 and bleomycin against L540cy tumor xenografts. In addition to direct cell killing, SGN-30 affects growth arrest and drug sensitization through growth regulating and proapoptotic machinery. Importantly, these data suggest that SGN-30 can enhance the efficacy of standard chemotherapies used to treat patients with CD30+ malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Skinnider BF, Elia AJ, Gascoyne RD, Trumper LH, Bonin FV, Kapp U et al. Interleukin 13 and interleukin 13 receptor are frequently expressed by Hodgkin and Reed–Sternberg cells of Hodgkin lymphoma. Blood 2001; 97: 250–255.

    Article  CAS  PubMed  Google Scholar 

  2. Leroy X, Augusto D, Leteurtre E, Gosselin B . CD30 and CD117 (c-kit) used in combination are useful for distinguishing embryonal carcinoma from seminoma. J Histochem Cytochem 2002; 50: 283–285.

    Article  CAS  PubMed  Google Scholar 

  3. Gruss H-J, Boiani N, Williams DE, Armitage RJ, Smith CA, Goodwin RG . Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood 1994; 83: 2045–2056.

    CAS  PubMed  Google Scholar 

  4. Pinto A, Aldinucci D, Gloghini A, Zagonel V, Degan M, Improta S et al. Human eosinophils express functional CD30 ligand and stimulate proliferation of a Hodgkin's disease cell line. Blood 1996; 88: 3299–3305.

    CAS  PubMed  Google Scholar 

  5. Wahl AF, Klussman K, Thompson JD, Chen JH, Francisco LV, Risdon G et al. The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin's disease. Cancer Res 2002; 62: 3736–3742.

    CAS  PubMed  Google Scholar 

  6. Barth S, Huhn M, Matthey B, Tawadros S, Schnell R, Schinkothe T et al. Ki-4(scFv)-ETA′, a new recombinant anti-CD30 immunotoxin with highly specific cytotoxic activity against disseminated Hodgkin tumors in SCID mice. Blood 2000; 95: 3909–3914.

    CAS  PubMed  Google Scholar 

  7. Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 2003; 102: 1458–1465.

    Article  CAS  PubMed  Google Scholar 

  8. Horie R, Watanabe T, Ito K, Morisita Y, Watanabe M, Ishida T et al. Cytoplasmic aggregation of TRAF2 and TRAF5 proteins in the Hodgkin–Reed–Sternberg cells. Am J Pathol 2002; 160: 1647–1654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pegram M, Hsu S, Lewis G, Pietras R, Beryt M, Sliwkowski M et al. Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene 1999; 18: 2241–2251.

    Article  CAS  PubMed  Google Scholar 

  10. Emmanouilides C, Jazirehi A, Bonavida B . Rituximab-mediated sensitization of B-non-Hodgkin's lymphoma (NHL) to cytotoxicity induced by paclitaxel, gemcitabine and vinorelbine. Cancer Biother Radiopharmaceut 2002; 17: 621–630.

    Article  CAS  Google Scholar 

  11. Pegram MD, Slamon DJ . Combination therapy with Trastuzumab (Herceptin) and cisplatin for chemoresistant metastatic breast cancer: evidence for receptor-enhanced chemosensitivity. Semin Oncol 1999; 12 (4, Suppl. 12): 89–95.

    Google Scholar 

  12. Vose J, Link B, Grossbard M, Czuczman M, Grillo-Lopez A, Gilman P et al. Phase II study of rituximab in combination with CHOP chemotherapy in patients with previously untreated, aggressive non-Hodgkin's lymphoma. J Clin Oncol 2001; 19: 3439.

    Article  Google Scholar 

  13. Maloney DG, Grillo-Lopez AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 1997; 90: 2188–2195.

    CAS  PubMed  Google Scholar 

  14. Pegram MD, Lipton A, Hayes DF, Weber BL, Baselga JM, Tripathy D et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol 1998; 16: 2659–2671.

    Article  CAS  PubMed  Google Scholar 

  15. Ohtsuka T, Buchsbaum D, Oliver P, Makhija S, Kimberly R, Zhou T . Synergistic induction of tumor cell apoptosis by death receptor antibody and chemotherapy agent through JNK/p38 and mitochondrial death pathway. Oncogene 2003; 22: 2034–2044.

    Article  CAS  PubMed  Google Scholar 

  16. Chou T, Talalay P . Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regulat 1984; 22: 27–55.

    Article  CAS  Google Scholar 

  17. Pegram MD, Konecny GE, O'Callaghan C, Beryt M, Pietras R, Slamon DJ . Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst 2004; 96: 739–749.

    Article  CAS  PubMed  Google Scholar 

  18. Mathas S, Lietz A, Janz M, Hinz M, Jundt F, Scheidereit C et al. Inhibition of NF-kappaB essentially contributes to arsenic-induced apoptosis. Blood 2003; 102: 1028–1034.

    Article  CAS  PubMed  Google Scholar 

  19. Roebuck KA, Finnegan A . Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J Leukoc Biol 1999; 66: 876–888.

    Article  CAS  PubMed  Google Scholar 

  20. Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S et al. Nuclear factor kappaB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med 2002; 196: 605–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang J, Yang X, Zhou P, Han H . Cloning of mouse genomic ribosomal protein L6 gene and analysis of its promoter. Biochim Biophys Acta 2002; 1576: 219–224.

    Article  CAS  PubMed  Google Scholar 

  22. Chou T-C, Motzer RJ, Tong Y, Bosl GJ . Computerized quantitation of synergism and antagonism of taxol, topotecan, and cisplatin against human teratocarcinoma cell growth: a rational approach to clinical protocol design. J Natl Cancer Inst 1994; 86: 1517–1524.

    Article  CAS  PubMed  Google Scholar 

  23. Engert A, Wolf J, Diehl V . Treatment of advanced Hodgkin's lymphoma: standard and experimental approaches. Semin Hematol 1999; 36: 282–289.

    CAS  PubMed  Google Scholar 

  24. Hertzberg M, Crombie C, Benson W, Taper J, Gottlieb D, Bradstock K . Outpatient-based ifosfamide, carboplatin and etoposide (ICE) chemotherapy in transplant-eligible patients with non-Hodgkin's and Hodgkin's disease. Ann Oncol 2003; 14 (Suppl. 1): 11–16.

    Article  Google Scholar 

  25. Carabasi M, Bartlett N, Younes A, Miller DM, Schliebner SD, Siegall CB et al. Pharmacokinetics, safety and tolerability of SGN-30, a chimeric monoclonal antibody (mAb), administered as a single dose to patients with CD30+ hematologic malignancies. Proc Am Soc Clin Oncol 2003; 22: 180.

    Google Scholar 

  26. Hubinger G, Muller E, Scheffrahn I, Schneider C, Hildt E, Singer BB et al. CD30-mediated cell cycle arrest associated with induced expression of p21CIP1/WAF1 in the anaplastic large cell lymphoma cell line Karpas 299. Oncogene 2001; 20: 590–598.

    Article  CAS  PubMed  Google Scholar 

  27. Schneider C, Stohr D, Merz H, Hubinger G . Signal transduction in anaplastic large cell lymphoma cells (ALCL) mediated by the tumor necrosis factor receptor CD30. Leukemia Lymphoma 2004; 45: 1009–1015.

    Article  CAS  PubMed  Google Scholar 

  28. Troester MA, Hoadley KA, Sorlie T, Herbert B-S, Borresen-Dale A-L, Lonning PE et al. Cell-type-specific responses to chemotherapeutics in breast cancer. Cancer Res 2004; 64: 4218–4226.

    Article  CAS  PubMed  Google Scholar 

  29. Huo JX, Metz SA, Li GD . p53-independent induction of p21(waf1/cip1) contributes to the activation of caspases in GTP-depletion-induced apoptosis of insulin-secreting cells. Cell Death Differ 2004; 11: 99–109.

    Article  CAS  PubMed  Google Scholar 

  30. Jakus J, Yeudall WA . Growth inhibitory concentrations of EGF induce p21 (WAF1/Cip1) and alter cell cycle control in squamous carcinoma cells. Oncogene 1996; 12: 2369–2376.

    CAS  PubMed  Google Scholar 

  31. Li Y, Dowbenko D, Lasky LA . AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem 2002; 277: 11352–11361.

    Article  CAS  PubMed  Google Scholar 

  32. Garcia JF, Camacho FI, Morente M, Fraga M, Montalban C, Alvaro T et al. Hodgkin and Reed–Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analysis using tissue microarrays. Blood 2003; 101: 681–689.

    Article  CAS  PubMed  Google Scholar 

  33. Chiarle R, Podda A, Prolla G, Podack ER, Thorbecke GJ, Inghirami G . CD30 overexpression enhances negative selection in the thymus and mediates programmed cell death via a Bcl-2-sensitive pathway. J Immunol 1999; 163: 194–205.

    CAS  PubMed  Google Scholar 

  34. Askew DS, Ashmun RA, Simmons BC, Cleveland JL . Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 1991; 6: 1915–1922.

    CAS  PubMed  Google Scholar 

  35. Wang H, Oliver P, Zhang Z, Agrawal S, Zhang R . Chemosensitization and radiosensitization of human cancer by antisense anti-MDM2 oligonucleotides: in vitro and in vivo activities and mechanisms. Ann N Y Acad Sci 2003; 1002: 217–235.

    Article  CAS  PubMed  Google Scholar 

  36. Heuck F, Ellermann J, Borchmann P, Rothe A, Hansen H, Engert A et al. Combination of the human anti-CD30 antibody 5F11 with cytostatic drugs enhances its antitumor activity against Hodgkin and anaplastic large cell lymphoma cell lines. J Immunother 2004; 27: 347–353.

    Article  CAS  PubMed  Google Scholar 

  37. Borchmann P, Treml JF, Hansen H, Gottstein C, Schnell R, Staak O et al. The human anti-CD30 antibody 5F11 shows in vitro and in vivo activity against malignant lymphoma. Blood 2003; 102: 3737–3742.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A F Wahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerveny, C., Law, CL., McCormick, R. et al. Signaling via the anti-CD30 mAb SGN-30 sensitizes Hodgkin's disease cells to conventional chemotherapeutics. Leukemia 19, 1648–1655 (2005). https://doi.org/10.1038/sj.leu.2403884

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403884

Keywords

This article is cited by

Search

Quick links