Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Lymphoma

Marked telomere shortening in mobilized peripheral blood progenitor cells (PBPC) following two tightly spaced high-dose chemotherapy courses with G-CSF

Abstract

The purpose of the study was to compare telomere length (TL) in peripheral blood progenitor cells (PBPC) collected after two tightly spaced high-dose (hd) chemotherapy courses. We assessed 37 previously untreated lymphoma patients undergoing a hd-chemotherapy program with autografting. They sequentially received hd-cyclophosphamide (CY) and hd-Ara-C, both followed by PBPC harvesting. Both post-CY and post-Ara-C harvests were assessed for TL by Southern blot analysis. In 12 patients, the assay was also performed on purified CD34+ cells. All patients displayed high PBPC mobilization following both hd-CY and hd-Ara-C. In all but one patient, TL was shorter in PBPC collected after Ara-C compared to CY: 7226 bp (range: 4135–9852) vs 8282 bp (range 4895–14860) (P<0.0001). This result was confirmed on CD34+ cells. Platelet recovery in patients receiving post-Ara-C PBPC was significantly slower compared to those receiving post-CY PBPC. In conclusion, (i) administration of tightly spaced hd-chemotherapy courses induces marked telomere shortening on harvested PBPC; (ii) engraftment kinetics seem slower, with delayed platelet recovery, in patients autografted with PBPC suffering marked TL erosion; (iii) long-term follow-up is required to verify whether PBPC with shortened telomeres display defective engraftment stability and/or risk of secondary leukemia; (iv) TL evaluation is advisable whenever new mobilization procedures are developed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Armitage JO . High-dose chemotherapy and autologous hematopoietic stem cell transplantation: the lymphoma experience and its potential relevance to solid tumors. Oncology 2000; 58: 198–206.

    Article  CAS  PubMed  Google Scholar 

  2. Gianni AM, Siena S, Bregni M, Tarella C, Stern AC, Pileri A et al. Granulocyte-macrophage colony-stimulating factor to harvest circulating haematopoietic stem cells for autotransplantation. Lancet 1989; 9: 580–585.

    Article  Google Scholar 

  3. Schmitz N, Linch DC, Dreger P, Goldstone AH, Boogaerts MA, Ferrant A et al. Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone marrow transplantation in lymphoma patients. Lancet 1996; 347: 353–357.

    Article  CAS  PubMed  Google Scholar 

  4. Hartmann O, Le Corroller AG, Blaise D, Michon J, Philip I, Norol F et al. Peripheral blood stem cell and bone marrow transplantation for solid tumors and lymphoma: hematologic recovery and cost. Ann Intern Med 1997; 126: 600–607.

    Article  CAS  PubMed  Google Scholar 

  5. Laport GF, Williams SF . The role of high-dose chemotherapy in patients with Hodgkin's disease and non-Hodgkin's lymphoma. Semin Oncol 1998; 25: 502–517.

    Google Scholar 

  6. Salles G, Coiffier B . Autologous peripheral blood stem cell transplantation for non-Hodgkin's lymphoma. Baillieres Best Pract Res Clin Haematol 1999; 12: 151–169.

    Article  CAS  PubMed  Google Scholar 

  7. Levine EG, Bloomfield CD . Leukemias and myelodysplastic syndromes secondary to drugs, radiation, and environmental exposure. Semin Oncol 1992; 19: 47–84.

    CAS  PubMed  Google Scholar 

  8. Darrington DL, Vose JM, Anderson JR, Bierman PJ, Bishop MR, Chan WC et al. Incidence and characterization of secondary myelodysplastic syndrome and acute myelogenous leukemia following high dose chemotherapy and autologous stem-cell transplantation for lymphoid malignancies. J Clin Oncol 1994; 12: 2527–2534.

    Article  CAS  PubMed  Google Scholar 

  9. Stone RM, Neuberg D, Soiffer R, Takvorian T, Whelan M, Rabinowe SN et al. Myelodysplastic syndrome as a late complication following autologous bone marrow transplantation for non-Hodgkin's lymphoma. J Clin Oncol 1994; 12: 2535–2542.

    Article  CAS  PubMed  Google Scholar 

  10. Kollmannsberger C, Hartmann JT, Kanz L, Bokemeyer C . Risk of secondary myeloid leukemia and myelodysplastic syndrome following standard-dose chemotherapy or high-dose chemotherapy with stem cell support in patients with potentially curable malignancies. J Cancer Res Clin Oncol 1998; 124: 207–214.

    Article  CAS  PubMed  Google Scholar 

  11. Micallef IN, Lillington DM, Apostolidis J, Amess JA, Neat M, Matthews J et al. Therapy-related myelodysplasia and secondary acute myelogenous leukemia after high-dose therapy with autologous hematopoietic progenitor-cell support for lymphoid malignancies. J Clin Oncol 2000; 18: 947–955.

    Article  CAS  PubMed  Google Scholar 

  12. Fenaux P . Chromosome and molecular abnormalities in myelodysplastic syndromes. Int J Hematol 2001; 73: 429–437.

    Article  CAS  PubMed  Google Scholar 

  13. Ohyashiki JH, Ohyashiki K, Fujimura T, Kawakubo K, Shimamoto T, Iwabuchi A et al. Telomere shortening associated with disease evolution patterns in myelodysplastic syndromes. Cancer Res 1994; 54: 3557–3560.

    CAS  PubMed  Google Scholar 

  14. Blackburn EH . Structure and function of telomeres. Nature 1991; 350: 569–573.

    Article  CAS  PubMed  Google Scholar 

  15. Van Steensel B, Smogorzewska A, de Lange T . TRF2 protects human telomeres from end-to-end fusions. Cell 1998; 92: 401.

    Article  CAS  PubMed  Google Scholar 

  16. Greider CW . Telomeres do D-loop–T-loop. Cell 1999; 97: 419–422.

    Article  CAS  PubMed  Google Scholar 

  17. Greider CW . Telomeres, telomerase and senescence. Bioassays 1990; 12: 363–369.

    Article  CAS  Google Scholar 

  18. Harley CB . Telomere loss: mitotic clock or genetic time bomb? Mutation Res 1991; 256: 271–282.

    Article  CAS  PubMed  Google Scholar 

  19. Lindsey J, McGill NI, Lindsey LA, Green DK, Cooke HJ . In vivo loss of telomeric repeats with age in humans. Mutat Res 1991; 256: 45–48.

    Article  CAS  PubMed  Google Scholar 

  20. Cerni C . Telomeres, telomerase and myc. An update. Mutant Res 2000; 462: 31–47.

    Article  CAS  Google Scholar 

  21. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 1992; 89: 10114–10118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reddel RR . The role of senescence and immortalization in carcinogenesis. Carcinogenesis 2000; 21: 477–484.

    Article  CAS  PubMed  Google Scholar 

  23. Chan W, Blackburn EH . New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 2002; 21: 553–563.

    Article  CAS  PubMed  Google Scholar 

  24. Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR . Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 1995; 14: 4240–4248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM . Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 1994; 91: 9857–9860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA et al. Activation of telomerase in human lymphocytes and hemopoietic progenitor cells. J Immunol 1995; 155: 3711–3715.

    CAS  PubMed  Google Scholar 

  27. Chiu CP, Dragowska W, Kim NW, Vaziri H, Yui J, Thomas TE et al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 1996; 14: 239–248.

    Article  CAS  PubMed  Google Scholar 

  28. Counter CM, Gupta J, Harley CB, Leber B, Bacchetti S . Telomerase activity in normal leukocytes and in hematological malignancies. Blood 1995; 85: 2315–2320.

    CAS  PubMed  Google Scholar 

  29. Ohyashiki JH, Sashida G, Tauchi T, Ohyashiki K . Telomeres and telomerase in hematologic neoplasia. Oncogene 2002; 21: 680–687.

    Article  CAS  PubMed  Google Scholar 

  30. Notaro R, Cimmino A, Tabarini D, Rotoli B, Luzzatto L . In vivo telomere dynamics of human hematopoietic stem cells. Proc Natl Acad Sci USA 1997; 94: 13782–13785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Akiyama M, Asai O, Kuraishi Y, Urashima M, Hoshi Y, Sakamaki H et al. Shortening of telomeres in recipients of both autologous and allogeneic hematopoietic stem cell transplatation. Bone Marrow Trasplant 2000; 25: 441–447.

    Article  CAS  Google Scholar 

  32. Schroder CP, Wisman GB, de Jong S, van der Graaf WT, Ruiters MH, Mulder NH et al. Telomere length in breast cancer patients before and after chemotherapy with or without cell transplantation. Br J Cancer 2001; 84: 1348–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rufer N, Brummendorf TH, Chapuis B, Helg C, Lansdorp PM, Roosnek E . Accelerated telomere shortening in haematological lineages is limited to the 1st year following stem cell transplantation. Blood 2001; 97: 575–577.

    Article  CAS  PubMed  Google Scholar 

  34. Tarella C, Di Nicola M, Caracciolo D, Zallio F, Cuttica A, Omede P et al. High-dose ara-C with autologous peripheral blood progenitor cell support induces a marked progenitor cell mobilization: an indication for patients at high risk for low mobilization. Bone Marrow Transplant 2002; 30: 725–732.

    Article  CAS  PubMed  Google Scholar 

  35. Tarella C, Zallio F, Caracciolo D, Cuttica A, Corradini P, Gavarotti P et al. High-dose mitoxantrone + melphalan (MITO/L-PAM) as conditioning regimen supported by peripheral blood progenitor cell (PBPC) autograft in 113 lymphoma patients: high tolerability with reversible cardiotoxicity. Leukemia 2001; 15: 256–263.

    Article  CAS  PubMed  Google Scholar 

  36. Tarella C, Castellino C, Locatelli F, Caracciolo D, Corradini P, Falda M et al. G-CSF administration following peripheral blood progenitor cell (PBPC) autograft in lymphoid malignancies: evidence for clinical benefits and reduction of treatment costs. Bone Marrow Transplant 1998; 21: 401–407.

    Article  CAS  PubMed  Google Scholar 

  37. Carlo-Stella C, Mangoni L, Piovani G, Garau D, Almici C, Rizzoli V . Identification of Philadelphia-negative granulocyte-macrophage colony-forming units generated by stroma-adherent cells from chronic myelogenous leukemia patients. Blood 1994; 83: 1373–1380.

    CAS  PubMed  Google Scholar 

  38. Sutherland HJ, Eaves CJ, Lansdorp PM, Phillips GL, Hogge DE . Kinetics of committed and primitive blood progenitor mobilization after chemotherapy and growth factor treatment and their use in autotransplants. Blood 1994; 83: 3808–3814.

    CAS  PubMed  Google Scholar 

  39. Carlo-Stella C, Dotti G, Mangoni L, Regazzi E, Garau D, Bonati A et al. Selection of myeloid progenitors lacking BCR-ABL mRNA in chronic myelogenous leukemia patients after in vitro treatment with the tyrosine kinase inhibitor genistein. Blood 1996; 88: 3091–3100.

    CAS  PubMed  Google Scholar 

  40. Sutherland HJ, Hogge DE, Cook D, Eaves CJ . Alternative mechanisms with and without steel factor support primitive human hematopoiesis. Blood 1993; 81: 1465–1470.

    CAS  PubMed  Google Scholar 

  41. Harley CB . Telomeres and Aging. in Telomeres. New York: Cold Spring Harbour Laboratory, 1995.

    Google Scholar 

  42. Lansdorp PM, Verwoerd NP, van de Rijke FM, Dragowska V, Little MT, Dirks RW et al. Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 1996; 5: 685–691.

    Article  CAS  PubMed  Google Scholar 

  43. Di Nicola M, Siena S, Corradini P, Bregni M, Milanesi M, Magni M et al. Elimination of bcl-2-IgH-positive follicular lymphoma cells from blood transplants with high recovery of hematopoietic progenitors by the Miltenyi CD34+ cell sorting system. Bone Marrow Transplant 1996; 18: 1117–1121.

    CAS  PubMed  Google Scholar 

  44. Magni M, Di Nicola M, Devizzi L, Matteucci P, Lombardi F, Gandola L et al. Successful in vivo purging of CD34-containing peripheral blood harvests in mantle cell and indolent lymphoma: evidence for a role of both chemotherapy and rituximab infusion. Blood 2000; 96: 864–869.

    CAS  PubMed  Google Scholar 

  45. Ladetto M, Zallio F, Vallet S, Ricca I, Cuttica A, Caracciolo D et al. Concurrent administration of high-dose chemotherapy and rituximab is a feasible and effective chemo/immunotherapy for patients with high-risk non-Hodgkin's lymphoma. Leukemia 2001; 15: 1941–1949.

    Article  CAS  PubMed  Google Scholar 

  46. Metayer C, Curtis RE, Vose J, Sobocinski KA, Horowitz MM, Bhatia S et al. Myelodysplastic syndrome and acute myeloid leukemia after autotransplantation for lymphoma: a multicenter case–control study. Blood 2003; 101: 2015–2023.

    Article  CAS  PubMed  Google Scholar 

  47. Engelhardt M, Kumar R, Albanell J, Pettengell R, Han W, Moore MA . Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood 1997; 90: 182–193.

    CAS  PubMed  Google Scholar 

  48. Szyper-Kravitz M, Uziel O, Shapiro H, Radnay J, Katz T, Rowe JM et al. Granulocyte colony-stimulating factor administration upregulates telomerase activity in CD34+ haematopoietic cells and may prevent telomere attrition after chemotherapy. Br J Haematol 2003; 120: 329–336.

    Article  CAS  PubMed  Google Scholar 

  49. Granger MP, Wright WE, Shay JW . Telomerase in cancer and aging. Crit Rev Oncol Hematol 2002; 41: 29–40.

    Article  PubMed  Google Scholar 

  50. Stewart SA, Hahn WC, O'Connor BF, Banner EN, Lundberg AS, Modha P et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci USA 2002; 99: 12606–12611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Blasco MA . Mammalian telomeres and telomerase: why they matter for cancer and aging. Eur J Cell Biol 2003; 82: 441–446.

    Article  CAS  PubMed  Google Scholar 

  52. Smith LL, Coller HA, Roberts JM . Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat Cell Biol 2003; 5: 474–479.

    Article  CAS  PubMed  Google Scholar 

  53. Awaya N, Baerlocher GM, Manley TJ, Sanders JE, Mielcarek M, Torok-Storb B et al. Telomere shortening in hematopoietic stem cell transplantation: a potential mechanism for late graft failure? Biol Blood Marrow Transplant 2002; 8: 597–600.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR), Associazione Italiana per la Ricerca sul Cancro (A.I.R.C.), Ricerca Finalizzata Regione Piemonte and Ministero della Salute and the Michelangelo Foundation for Advances in Cancer Research and Treatment. IR is recipient of a fellowship from Fondazione Italiana Ricerca sul Cancro (FIRC), Milan, Italy. MC and MDA have been supported by a fellowship from A Bossolasco (MC) and from G Ghirotti (MDA) Foundations, Turin, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Tarella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricca, I., Compagno, M., Ladetto, M. et al. Marked telomere shortening in mobilized peripheral blood progenitor cells (PBPC) following two tightly spaced high-dose chemotherapy courses with G-CSF. Leukemia 19, 644–651 (2005). https://doi.org/10.1038/sj.leu.2403652

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403652

Keywords

This article is cited by

Search

Quick links