Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

DNA Methylation

Induction of gene expression by 5-Aza-2′-deoxycytidine in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) but not epithelial cells by DNA-methylation-dependent and -independent mechanisms

Abstract

The methylation inhibitor 5-Aza-2′-deoxycytidine (5-Aza-CdR, decitabine) has therapeutic efficacy in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Using microarray analysis, we investigated global changes in gene expression after 5-Aza-CdR treatment in AML. In the AML cell line OCI-AML2, Aza-CdR induced the expression of 81 out of 22 000 genes; 96 genes were downregulated (2-fold change in expression). RT-PCR analysis of 10 randomly selected genes confirmed the changes of expression in AML cells. Similar results were obtained with primary AML and MDS cells after treatment with 5-Aza-CdR ex vivo and in vivo, respectively. In contrast, significantly fewer changes in gene expression and cytotoxicity were detected in normal peripheral blood mononuclear and bone marrow cells or transformed epithelial cells treated with 5-Aza-CdR. Interestingly, only 50.6% of the induced genes contain putative CpG islands in the 5′ region. To further investigate the significance of promoter methylation in the induced genes, we analyzed the actual methylation status of randomly selected 5-Aza-CdR-inducible genes. We detected hypermethylation exclusively in the 5′ region of the myeloperoxidase (MPO) gene. DNA methylation inversely correlated with MPO expression in newly diagnosed untreated AML patients (P0.004). In contrast, all other analyzed 5-Aza-CdR-inducible genes revealed no CpG methylation in the promoter region, suggesting a methylation-independent effect of 5-Aza-CdR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 1
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Momparler RL, Bovenzi V . DNA methylation and cancer. J Cell Physiol 2000; 183: 145–154.

    Article  CAS  PubMed  Google Scholar 

  2. Singal R, Ginder GD . DNA methylation. Blood 1999; 93: 4059–4070.

    CAS  PubMed  Google Scholar 

  3. Melki JR, Warnecke P, Vincent PC, Clark SJ . Increased DNA methyltransferase expression in leukaemia. Leukemia 1998; 12: 311–316.

    Article  CAS  PubMed  Google Scholar 

  4. Paz MF, Fraga MF, Avila S, Guo M, Pollan M, Herman JG et al. A systematic profile of DNA methylation in human cancer cell lines. Cancer Res 2003; 63: 1114–1121.

    CAS  PubMed  Google Scholar 

  5. Issa JP, Zehnbauer BA, Civin CI, Collector MI, Sharkis SJ, Davidson NE et al. The estrogen receptor CpG island is methylated in most hematopoietic neoplasms. Cancer Res 1996; 56: 973–977.

    CAS  PubMed  Google Scholar 

  6. Corn PG, Smith BD, Ruckdeschel ES, Douglas D, Baylin SB, Herman JG . E-cadherin expression is silenced by 5′ CpG island methylation in acute leukemia. Clin Cancer Res 2000; 6: 4243–4248.

    CAS  PubMed  Google Scholar 

  7. Melki JR, Vincent PC, Clark SJ . Cancer-specific region of hypermethylation identified within the HIC1 putative tumour suppressor gene in acute myeloid leukaemia. Leukemia 1999; 13: 877–883.

    Article  CAS  PubMed  Google Scholar 

  8. Hermann M, Scholman HJ, Marafioti T, Stein H, Schriever F . Differential expression of apoptosis, bcl-x and c-myc in normal and in malignant lymphoid tissues. Eur J Haematol 1997; 59: 20–30.

    Article  CAS  PubMed  Google Scholar 

  9. Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JP . Methylation profiling in acute myeloid leukemia. Blood 2001; 97: 2823–2829.

    Article  CAS  PubMed  Google Scholar 

  10. Quesnel B, Guillerm G, Vereecque R, Wattel E, Preudhomme C, Bauters F et al. Methylation of the p15 (INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 1998; 91: 2985–2990.

    CAS  PubMed  Google Scholar 

  11. Daskalakis M, Nguyen TT, Nguyen C, Guldberg P, Köhler G, Wijermans P et al. Demethylation of a hypermethylated p16/INK4B gene in patients with myeloblastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 2002; 100: 2957–2964.

    Article  CAS  PubMed  Google Scholar 

  12. Wijermans P, Lubbert M, Verhoef G, Bosly A, Ravoet C, Andre M et al. Low-dose 5-aza-2′deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 2000; 18: 956–962.

    Article  CAS  PubMed  Google Scholar 

  13. Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004; 103: 1635–1640.

    Article  CAS  PubMed  Google Scholar 

  14. Kondo Y, Shen L, Issa JP . Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol 2003; 23: 206–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu WG, Dai Z, Ding H, Srinivasan K, Hall J, Duan W et al. Increased expression of unmethylated CDKN2D by 5-aza-2′-deoxycytidine in human lung cancer cells. Oncogene 2001; 20: 7787–7796.

    Article  CAS  PubMed  Google Scholar 

  16. Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001; 409: 207–211.

    Article  CAS  PubMed  Google Scholar 

  17. Ferguson AT, Vertino PM, Spitzner JR, Baylin SB, Muller MT, Davidson NE . Role of estrogen receptor gene demethylation and DNA methyltransferase. DNA adduct formation in 5-aza-2′deoxycytidine-induced cytotoxicity in human breast cancer cells. J Biol Chem 1997; 272: 32260–32266.

    Article  CAS  PubMed  Google Scholar 

  18. Juttermann R, Li E, Jaenisch R . Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA 1994; 91: 11797–11801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Christman JK . 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002; 21: 5483–5495.

    Article  CAS  PubMed  Google Scholar 

  20. Liang G, Gonzalez FA, Jones PA, Orntoft TF, Thykjaer T . Analysis of gene induction in human fibroblasts and bladder cancer cells exposed to the methylation inhibitor 5-aza-2′-deoxycytidine. Cancer Res 2002; 62: 961–966.

    CAS  PubMed  Google Scholar 

  21. Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 2002; 31: 141–149.

    Article  CAS  PubMed  Google Scholar 

  22. Shi H, Wei SH, Leu YW, Rahmatpanah F, Liu JC, Yan PS et al. Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Res 2003; 63: 2164–2171.

    CAS  PubMed  Google Scholar 

  23. Kawano S, Miller CW, Gombart AF, Bartram CR, Matsuo Y, Asou H et al. Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 1999; 94: 1113–1120.

    CAS  PubMed  Google Scholar 

  24. Pinto A, Maio M, Attadia V, Zappacosta S, Cimino R . Modulation of HLA-DR antigens expression in human myeloid leukaemia cells by cytarabine and 5-aza-2′-deoxycytidine. Lancet 1984; 2: 867–868.

    Article  CAS  PubMed  Google Scholar 

  25. Lübbert M, Miller CW, Koeffler HP . Changes of DNA methylation and chromatin structure in the human myeloperoxidase gene during myeloid differentiation. Blood 1991; 78: 345–356.

    PubMed  Google Scholar 

  26. Roman-Gomez J, Castillejo J-A, Jimenez A, Gonzalez MG, Moreno F, Rodriguez MDC et al. 5′ CpG island hypermethylation is associated with transcriptional silencing of the p21CIP/WAF1/SDI1 gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 2002; 99: 2291–2296.

    Article  CAS  PubMed  Google Scholar 

  27. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821–9826.

    Article  CAS  PubMed  Google Scholar 

  28. Momparler RL, Bouffard DY, Momparler LF, Dionne J, Belanger K, Ayoub J . Pilot phase I–II study on 5-aza-2′-deoxycytidine (Decitabine) in patients with metastatic lung cancer. Anticancer Drugs 1997; 8: 358–368.

    Article  CAS  PubMed  Google Scholar 

  29. Kantarjian HM, O'Brien S, Cortes J, Giles FJ, Faderl S, Issa JP et al. Results of decitabine (5-aza-2′deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. Cancer 2003; 98: 522–528.

    Article  CAS  PubMed  Google Scholar 

  30. Tibbles LA, Woodgett JR . The stress-activated protein kinase pathways. Cell Mol Life Sci 1999; 55: 1230–1254.

    Article  CAS  PubMed  Google Scholar 

  31. Norgaard JM, Olesen LH, Olesen G, Meyer K, Kristensen JS, Bendix K et al. FAB M4 and high CD14 surface expression is associated with high cellular resistance to Ara-C and daunorubicin: implications for clinical outcome in acute myeloid leukaemia. Eur J Haematol 2001; 67: 221–229.

    Article  CAS  PubMed  Google Scholar 

  32. Passey RJ, Xu K, Hume DA, Geczy CL . S100A8: emerging functions and regulation. J Leukocyte Biol 1999; 66: 549–556.

    Article  CAS  PubMed  Google Scholar 

  33. Goyert SM, Ferrero E, Rettig WJ, Yenamandra AK, Obata F, Le Beau MM . The CD14 monocyte differentiation antigen maps to a region encoding growth factors and receptors. Science 1988; 239: 497–500.

    Article  CAS  PubMed  Google Scholar 

  34. Bartolucci S, Estenoz M, Longo A, Santoro B, Momparler RL, Rossi M et al. 5-Aza-2′-deoxycytidine as inducer of differentiation and growth inhibition in mouse neuroblastoma cells. Cell Differ Dev 1989; 27: 47–55.

    Article  CAS  PubMed  Google Scholar 

  35. Pinto A, Attadia V, Fusco A, Ferrara F, Spada OA, Di Fiore PP . 5-Aza-2′-deoxycytidine induces terminal differentiation of leukemic blasts from patients with acute myeloid leukemias. Blood 1984; 64: 922–929.

    CAS  PubMed  Google Scholar 

  36. Milutinovic S, Knox JD, Szyf M . DNA methyltransferase inhibition induces the transcription of the tumor suppressor p21(WAF1/CIP1/sdi1). J Biol Chem 2000; 275: 6353–6359.

    Article  CAS  PubMed  Google Scholar 

  37. Fournel M, Sapieha P, Beaulieu N, Besterman JM, MacLeod AR . Down-regulation of human DNA-(cytosine-5) methyltransferase induces cell cycle regulators p16(ink4A) and p21(WAF/Cip1) by distinct mechanisms. J Biol Chem 1999; 274: 24250–24256.

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen CT, Weisenberger DJ, Velicescu M, Gonzalez FA, Lin JC, Liang G et al. Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res 2002; 62: 6456–6461.

    CAS  PubMed  Google Scholar 

  39. Lavelle D, DeSimone J, Hankewych M, Kousnetzova T, Chen Y-H . Decitabine induces cell cycle arrest at the G1 phase via p21WAF1 and the G2/M phase via the p38 MAP kinase pathway. Leukemia Res 2003; 27: 999–1007.

    Article  CAS  Google Scholar 

  40. Matsuo T, Kuriyama K, Miyazaki Y, Yoshida S, Tomonaga M, Emi N et al. The percentage of myeloperoxidase-positive blast cells is a strong independent prognostic factor in acute myeloid leukemia, even in the patients with normal karyotype. Leukemia 2003; 17: 1538–1543.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr P Westermann for performing the hybridization and scanning of the arrays and Martina Runge for excellent technical assistance. We also thank Dr Martin Janz for helpful discussions and Dr W-D Ludwig, Berlin for providing patient samples. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Ta208/5), (Ta208/7), (Lu429/5-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Tamm.

Additional information

Supplementary Information

Supplementary Information is available on the Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmelz, K., Sattler, N., Wagner, M. et al. Induction of gene expression by 5-Aza-2′-deoxycytidine in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) but not epithelial cells by DNA-methylation-dependent and -independent mechanisms. Leukemia 19, 103–111 (2005). https://doi.org/10.1038/sj.leu.2403552

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403552

Keywords

Search

Quick links