Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Raf and VEGF: emerging therapeutic targets in Kaposi's sarcoma-associated herpesvirus infection and angiogenesis in hematopoietic and nonhematopoietic tumors

Abstract

Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with several cancers including Kaposi's sarcoma (KS), primary effusion lymphoma, and multicentric Castleman's disease. KSHV-mediated pathogenesis is dependent mainly on KSHV infection as well as on the microenvironment provided by the growth factors (GFs)/inflammatory cytokines (ICs). Recently, we determined that oncoprotein Raf enhances KSHV infection of target cells. Interestingly, Raf regulates the expression of a variety of GFs/ICs including those involved in angiogenesis such as vascular endothelial growth factor (VEGF). In this review, we discuss the effect of the Raf-GF/IC autocrine/paracrine loop on KSHV infection of both hematopoietic and nonhematopietic cells, and associated disease conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 1994; 266: 1865–1869.

    Article  CAS  PubMed  Google Scholar 

  2. Gallo RC . HIV-1, HHV-8, and Kaposi's sarcoma. J Hum Virol 1998; 1: 185–186.

    CAS  PubMed  Google Scholar 

  3. Verma SC, Roberson ES . Molecular biology and pathogenesis of Kaposi sarcoma-associated herpesvirus. FEMS Microbiol Lett 2003; 222: 155–163.

    Article  CAS  PubMed  Google Scholar 

  4. Sarid R, Klepfish A, Schattner A . Virology, pathogenetic mechanisms, and associated diseases of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8). Mayo Clin Proc 2002; 77: 941–949.

    Article  CAS  PubMed  Google Scholar 

  5. Ablashi DV, Chatlynne LG, Whitman Jr JE, Cesarman E . Spectrum of Kaposi's sarcoma-associated herpesvirus, or human herpesvirus 8, diseases. Clin Microbiol Rev 2002; 15: 439–464.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ensoli B, Sgadari C, Barillari G, Sirianni MC, Sturzl M, Monini P . Biology of Kaposi's sarcoma. Eur J Cancer 2001; 37: 1251–1269.

    Article  CAS  PubMed  Google Scholar 

  7. Kempf W, Cathomas G, Burg G, Trueb RM . Micronodular Kaposi's sarcoma – a new variant of classic-sporadic Kaposi's sarcoma. Dermatology 2004; 208: 255–258.

    Article  PubMed  Google Scholar 

  8. Schulz TF . KSHV/HHV8-associated lymphoproliferations in the AIDS setting. Eur J Cancer 2001; 37: 1217–1226.

    Article  CAS  PubMed  Google Scholar 

  9. Ensoli B, Sturzl M, Monini P . Cytokine-mediated growth promotion of Kaposi's sarcoma and primary effusion lymphoma. Cancer Biol 2000; 10: 367–381.

    Article  CAS  Google Scholar 

  10. Geraminejad P, Memar O, Aronson I, Rady PL, Hengge U, Tyring SK . Kaposi's sarcoma and other manifestations of human herpesvirus 8. J Am Acad Dermatol 2002; 47: 641–655.

    Article  PubMed  Google Scholar 

  11. Hengge UR, Ruzicka T, Tyring SK, Stuschke M, Roggendorf M, Schwartz RA et al. Update on Kaposi's sarcoma and other HHV8 associated diseases. Part 2: pathogenesis, Castleman's disease, and pleural effusion lymphoma. Lancet 2002; 2: 344–352.

    Article  Google Scholar 

  12. Cesarman E, Mesri EA, Gershengorn MC . Viral G protein-coupled receptor and Kaposi's sarcoma: a model of paracrine neoplasia. J Exp Med 2000; 191: 417–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoischen SH, Vollmer P, Marz P, Ozbek S, Gotze KS, Peschel C et al. Human herpes virus 8 interleukin-6 homologue triggers gp130 on neuronal and hematopoietic cells. Eur J Biochem 2000; 267: 3604–3612.

    Article  CAS  PubMed  Google Scholar 

  14. Yao L, Salvucci O, Cardones AR, Hwang ST, Aoki Y, De La Luz Sierra M et al. Selective expression of stromal-derived factor-1 in the capillary vascular endothelium plays a role in Kaposi sarcoma pathogenesis. Blood 2003; 102: 3900–3905.

    Article  CAS  PubMed  Google Scholar 

  15. Salvucci O, Yao L, Villalba S, Sajewicz A, Pittaluga S, Tosato G . Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood 2002; 99: 2703–2711.

    Article  CAS  PubMed  Google Scholar 

  16. Stevenson FT, Turck J, Locksley RM, Lovett DH . The N-terminal propiece of interleukin 1 alpha is a transforming nuclear oncoprotein. Proc Natl Acad Sci USA 1997; 94: 508–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dinarello CA . The interleukin-1 family: 10 years of discovery. FASEB J 1994; 8: 1314–1325.

    Article  CAS  PubMed  Google Scholar 

  18. Simonart T, Van Vooren JP . Interleukin-1 beta increases the BCL-2/BAX ratio in Kaposi's sarcoma cells. Cytokine 2002; 19: 259–266.

    Article  CAS  PubMed  Google Scholar 

  19. Estrov Z, Talpaz M . Role of interleukin-1 beta converting enzyme (ICE) in acute myelogenous leukemia cell proliferation and programmed cell death. Leukemia Lymphoma 1997; 24: 379–391.

    Article  CAS  PubMed  Google Scholar 

  20. Naka T, Nishimoto N, Kishimoto T . The paradigm of IL-6: from basic science to medicine. Arthritis Res 2002; 4: S233–S242.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mukaida N, Harada A, Matsushima K . Interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions. Cytokine Growth Factor Rev 1998; 9: 9–23.

    Article  CAS  PubMed  Google Scholar 

  22. van Eeden SF, Terashima T . Interleukin 8 (IL-8) and the release of leukocytes from the bone marrow. Leukemia Lymphoma 2000; 37: 259–271.

    Article  CAS  PubMed  Google Scholar 

  23. Singh RK, Varney ML . IL-8 expression in malignant melanoma: implications in growth and metastasis. Histol Histopathol 2000; 15: 843–849.

    CAS  PubMed  Google Scholar 

  24. Bian X, Chen Z, Guo D, Du L, Xin R, Shi J . Expression of angiogenic factors and cell cycle regulation factors in human glioblastoma cell line SHG-44. Zhonghua Bing Li Xue Za Zhi 1999; 28: 178–181.

    CAS  PubMed  Google Scholar 

  25. Schecter AD, Berman AB, Yi L, Ma H, Daly CM, Soejima K et al. MCP-1-dependent signaling in CCR2−/− aortic smooth muscle cells. J Leukocyte Biol 2004; 75: 1079–1085.

    Article  CAS  PubMed  Google Scholar 

  26. Verma A, Platanias LC . Signaling via the interferon-α receptor in chronic myelogenous leukemia cells. Leukemia Lymphoma 2002; 43: 703–709.

    Article  CAS  PubMed  Google Scholar 

  27. Chang J, Renne R, Dittmer D, Ganem D . Inflammatory cytokines and the reactivation of Kaposi's sarcoma associated herpesvirus lytic replication. Virology 2000; 266: 17–25.

    Article  CAS  PubMed  Google Scholar 

  28. Bayas A, Gold R . Lessons from 10 years of interferon beta-1b (Betaferon/Betaseron) treatment. J Neurol 2003; 250: IV3–IV8.

    Article  CAS  PubMed  Google Scholar 

  29. Coclet-Ninin J, Dayer JM, Burger D . Interferon-beta not only inhibits interleukin-1beta and tumor necrosis factor-alpha but stimulates interleukin-1 receptor antagonist production in human peripheral blood mononuclear cells. Eur Cytokine Networks 1997; 8: 345–349.

    CAS  Google Scholar 

  30. Young HA . Regulation of interferon-gamma gene expression. J Interferon Cytokine Res 1996; 16: 563–568.

    Article  CAS  PubMed  Google Scholar 

  31. Schroder K, Hertzog PJ, Ravasi T, Hume DA . Interferon-gamma: an overview of signals, mechanisms and functions. J Leukocyte Biol 2004; 75: 163–189.

    Article  CAS  PubMed  Google Scholar 

  32. Geppert TD, Whitehurst CE, Thompson P, Beutler B . Lipopolysaccharide signals activation of tumor necrosis factor biosynthesis through the ras/raf-1/MEK/MAPK pathway. Mol Med 1994; 1: 93–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McDevitt H, Munson S, Ettinger R, Wu A . Multiple roles for tumor necrosis factor-alpha and lymphotoxin alpha/beta in immunity and autoimmunity. Arthritis Res 2002; 4: S141–S152.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Thompson MP, Aggarwal BB, Shishodia S, Estrov Z, Kurzrock R . Autocrine lymphotoxin production in Epstein–Barr virus-immortalized B cells: induction via NF-kappaB activation mediated by EBV-derived latent membrane protein 1. Leukemia 2003; 17: 2196–2201.

    Article  CAS  PubMed  Google Scholar 

  35. Chin D, Boyle GM, Parsons PG, Coman WB . What is transforming growth factor-beta (TGF-beta)? Br J Plast Surg 2004; 57: 215–221.

    Article  PubMed  Google Scholar 

  36. Kim SJ, Letterio J . Transforming growth factor-beta signaling in normal and malignant hematopoiesis. Leukemia 2003; 17: 1731–1737.

    Article  CAS  PubMed  Google Scholar 

  37. Aoki Y, Tosato G . Vascular endothelial growth factor/vascular permeability factor in the pathogenesis of primary effusion lymphomas. Leukemia Lymphoma 2001; 41: 229–237.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng AC, Stephens DP, Currie BJ . Granulocyte colony stimulating factor (G-CSF) as an adjunct to antibiotics in the treatment of pneumonia in adults. Cochrane Database Syst Rev 2003; 4: CD004400.

    Google Scholar 

  39. Masood R, Cesarman E, Smith DL, Gill PS, Flore O . Human herpesvirus-8-transformed endothelial cells have functionally activated vascular endothelial growth factor/vascular endothelial growth factor receptor. Am J Pathol 2002; 160: 23–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Raab G, Higashiyama S, Hetelekidis S, Abraham JA, Damm D, Ono M et al. Biosynthesis and processing by phorbo ester of the cells surface associated precursor form of heparin-binding EGF-like growth factor. Biochem Biophys Res Commun 1994; 204: 592–597.

    Article  CAS  PubMed  Google Scholar 

  41. Higashiyama S, Iwamoto R, Goishi K, Raab G, Taniguchi N, Klagsbrun M et al. The membrane protein CD9/DRAP27 potentiates the justacrine growth factor activity of the membrane-anchored heparin-binding EGF-like growth factor. J Cell Biol 1995; 128: 929–938.

    Article  CAS  PubMed  Google Scholar 

  42. Raab G, Klagsbrun M . Heparin-binding EGF-like growth factor. Biochim Biophys Acta 1997; 1333: F179–F199.

    CAS  PubMed  Google Scholar 

  43. Olayioye MA, Neve RM, Lane HA, Hynes NE . The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000; 19: 3159–3167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thompson SA, Higashiyamanll S, Wood K, Pollitt NS, Damm D, McEnroe G et al. Characterization of sequences within heparin-binding EGF-like growth factor that mediate interaction with heparin. J Biol Chem 1994; 269: 2541–2549.

    CAS  PubMed  Google Scholar 

  45. Hamilton JA . GM-CSF in inflammation and autoimmunity. Trends Immunol 2002; 23: 403–408.

    Article  CAS  PubMed  Google Scholar 

  46. Weidermann FJ, Mittermayr M, Hoffmann G, Schobersberger W . Recombinant granulocyte colony-stimulating factor (G-CSF) in infectious diseases: still a debate. Wien Klin Wochenschr 2001; 113: 90–96.

    Google Scholar 

  47. De Falco S, Gigante B, Persico MG . Structure and function of placental growth factor. Trends Cardiovasc Med 2002; 12: 241–246.

    Article  CAS  PubMed  Google Scholar 

  48. Lamszus K, Laterra J, Westphal M, Rosen EM . Scatter factor/hepatocyte growth factor (SF/HGF) content and function in human gliomas. Int J Dev Neurosci 1999; 17: 517–530.

    Article  CAS  PubMed  Google Scholar 

  49. Naidu YM, Rosen EM, Zitnick R, Goldberg I, Park M, Naujokas M et al. Role of scatter factor in the pathogenesis of AIDS-related Kaposi sarcoma. Proc Natl Acad Sci USA 1994; 91: 5281–5285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. George D . Platelet-derived growth factor receptors: a therapeutic target in solid tumors. Semin Oncol 2001; 28: 27–33.

    Article  CAS  PubMed  Google Scholar 

  51. Tanaka M, Miyajima A . Oncostatin M, a multifunctional cytokine. Rev Physiol Biochem Pharmacol 2003; 149: 39–52.

    Article  CAS  PubMed  Google Scholar 

  52. Pelletier JP, Martel-Pelletier J . Oncostatin M: foe or friend? Arthritis Rheum 2003; 48: 3301–3303.

    Article  PubMed  Google Scholar 

  53. Mercader M, Taddeo B, Panella JR, Chandran B, Nickoloff BJ, Foreman KE . Induction of HHV-8 lytic cycle replication by inflammatory cytokines produced by HIV-1-infected T cells. Am J Pathol 2000; 156: 1961–1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wong RW, Guillaud L . The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine Growth Factor Rev 2004; 15: 147–156.

    Article  CAS  PubMed  Google Scholar 

  55. Wolff T . EGF receptor signaling: putting a new spin on eye development. Curr Biol 2003; 13: R813–R814.

    Article  CAS  PubMed  Google Scholar 

  56. Bieker R, Padro T, Kramer J, Steins M, Kessler T, Retzlaff S et al. Overexpression of basic fibroblast growth factor and autocrine stimulation in acute myeloid leukemia. Cancer Res 2003; 63: 7241–7246.

    CAS  PubMed  Google Scholar 

  57. Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS et al. G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 1998; 391: 86–89.

    Article  CAS  PubMed  Google Scholar 

  58. Whitman AG, Hamden KH, Ford PW, McCubrey JA, Akula SM . Role for Raf in the entry of viruses associated with AIDS. Int J Oncol 2004; 25: 469–480.

    CAS  PubMed  Google Scholar 

  59. Shelton JG, Moye PW, Steelman LS, Blalock WL, Lee JT, Franklin RA et al. Differential effects of kinase cascade inhibitors on neoplastic and cytokine-mediated cell proliferation. Leukemia 2003; 17: 1765–1782.

    Article  CAS  PubMed  Google Scholar 

  60. McCubrey JA, Steelman LS, Hoyle PE, Blalock WL, Weinstein-Oppenheimer C, Franklin RA et al. Differential abilities of activated Raf oncoproteins to abrogate cytokine dependency, prevent apoptosis and induce autocrine growth factor synthesis in human hematopoietic cells. Leukemia 1998; 12: 1903–1929.

    Article  CAS  PubMed  Google Scholar 

  61. Blalock WL, Pearce M, Chang F, Lee JT, Pohnert SC, Burrows C et al. Effects of inducible MEK1 activation on the cytokine dependency of lymphoid cells. Leukemia 2001; 15: 794–807.

    Article  CAS  PubMed  Google Scholar 

  62. Chang J, Renne R, Dittmer D, Ganem D . Inflammatory cytokines and the reactivation of Kaposi's sarcoma associated herpesvirus lytic replication. Virology 2000; 266: 17–25.

    Article  CAS  PubMed  Google Scholar 

  63. Ganem D . Human herpesvirus 8 and its role in the genesis of Kaposi's sarcoma. Curr Clin Top Infect Dis 1998; 18: 237–251.

    CAS  PubMed  Google Scholar 

  64. Peyssonnaux C, Eychene A . The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 2001; 1–2: 53–62.

    Article  Google Scholar 

  65. Hilger RA, Scheulen ME, Strumberg D . The Ras–Raf–MEK–ERK pathway in the treatment of cancer. Onkologie 2002; 25: 511–518.

    CAS  PubMed  Google Scholar 

  66. Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, Reynolds Jr FH et al. Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci USA 1983; 80: 4218–4222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bos JL . Ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–4689.

    CAS  PubMed  Google Scholar 

  68. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–953.

    Article  CAS  PubMed  Google Scholar 

  69. Wellbrock C, Ogilvie L, Hedley D, Karasarides M, Martin J, Niculescu-Duvaz D et al. V599EB-RAF is an oncogene in melanocytes. Cancer Res 2004; 64: 2338–2342.

    Article  CAS  PubMed  Google Scholar 

  70. Mercer KE, Pritchard CA . Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim Biophys Acta 2003; 1653: 25–40.

    CAS  PubMed  Google Scholar 

  71. O'Neill E, Kolch W . Conferring specificity on the ubiquitous Raf/MEK signaling pathway. Br J Cancer 2004; 90: 283–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Querbes W, Benmerah A, Tosoni D, Di Fiore PP, Atwood WJ . A JC virus-induced signal is required for infection of glial cells by a clathrin- and eps15-dependent pathway. J Virol 2004; 78: 250–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang X, Huong SM, Chiu ML, Raab-Traub N, Huang ES . Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 2003; 424: 456–461.

    Article  CAS  PubMed  Google Scholar 

  74. Sharma-Walia N, Naranatt PP, Krishnan HH, Zeng L, Chandran B . Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 envelope glycoprotein gB induces the integrin-dependent focal adhesion kinase-Src-phosphatidylinositol 3-kinase-rho GTPase signal pathways and cytoskeletal rearrangements. J Virol 2004; 78: 4207–4223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Akula SM, Ford PW, Whitman AG, Hamden KE, Shelton JG, McCubrey JA . Raf promotes human herpesvirus-8 (HHV-8/KSHV) infection. Oncogene 2004; 23: 5227–5241.

    Article  CAS  PubMed  Google Scholar 

  76. Hoyle PE, Moye PW, Steelman LS, Blalock WL, Franklin RA, Pearce M et al. Differential abilities of the Raf family of protein kinases to abrogate cytokine dependency and prevent apoptosis in murine hematopoietic cells by MEK1-dependent mechanism. Leukemia 2000; 14: 642–656.

    Article  CAS  PubMed  Google Scholar 

  77. Ford PW, Whitman AG, Hamden KE, McCubrey JA, Akula SM . Vascular endothelial growth factor augments human herpesvirus-8 (HHV-8/KSHV) infection. Cancer Biol Ther 2004 (in press).

  78. Hamden KH, Ford PW, Whitman AG, Dyson OF, McCubrey JA, Akula SM . Raf induced vascular endothelial growth factor augments Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) inf ection. J Virol (in press).

  79. Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L . VEGF-receptor signal transduction. Trends Biochem Sci 2003; 28: 488–494.

    Article  CAS  PubMed  Google Scholar 

  80. Flaxenburg JA, Melter M, Lapchak PH, Briscoe DM, Pal S . The CD40-induced signaling pathway in endothelial cells resulting in the overexpression of vascular endothelial growth factor involves Ras and phosphatidylinositol 3-kinase. J Immun 2004; 172: 7503–7509.

    Article  CAS  PubMed  Google Scholar 

  81. Ruhrberg C . Growing and shaping the vascular tree: multiple roles for VEGF. BioEssays 2003; 25: 1052–1060.

    Article  CAS  PubMed  Google Scholar 

  82. Cramer T, Schipani E, Johnson RS, Swoboda B, Pfander D . Expression of VEGF isoforms by epiphyseal chondrocytes during low-oxygen tension is HIF-1 alpha dependent. Osteoarthr Cartilage 2004; 12: 433–439.

    Article  CAS  Google Scholar 

  83. Bairey O, Boycov O, Kaganovsky E, Zimra Y, Shaklai M, Rabizadeh E . All three receptors for vascular endothelial growth factor (VEGF) are expressed on B-chronic lymphocytic leukemia (CLL) cells. Leukemia Res 2004; 28: 243–248.

    Article  CAS  Google Scholar 

  84. Mercurio AM, Bachelder RE, Bates RC, Chung J . Autocrine signaling in carcinoma: VEGF and the alpha6beta4 integrin. Semin Cancer Biol 2004; 14: 115–122.

    Article  CAS  PubMed  Google Scholar 

  85. Ferrara N . Vascular endothelial growth factor as a target for anticancer therapy. Oncologist 2004; 9: 2–10.

    Article  CAS  PubMed  Google Scholar 

  86. Rak J, Yu JL, Klement G, Kerbel RS . Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J Invest Dermatol Symp Proc 2000; 5: 24–33.

    Article  CAS  Google Scholar 

  87. Fernando NH, Herwitz HI . Inhibition of vascular endothelial growth factor in the treatment of colorectal cancer. Semin Oncol 2003; 30: S39–S50.

    Article  CAS  Google Scholar 

  88. Manley PW, Bold G, Brüggen J, Fendrich G, Furet P, Mestan J et al. Advances in the structural biology, design and clinical development of VEGF-R kinase inhibitors for the treatment of angiogenesis. Biochem Biophys Acta 2004; 1697: 17–27.

    CAS  PubMed  Google Scholar 

  89. Sun L, Liang C, Shirazian S, Zhou Y, Miller T, Cui J et al. Discovery of 5-[5-flouro-2-oxo-1,2-dihydroin-dol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic Acid (2-diethylaminothyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J Med Chem 2003; 46: 1116–1119.

    Article  CAS  PubMed  Google Scholar 

  90. Hennequin LF, Stokes ESE, Thomas AP, Johnstone C, Ple PA, Ogilvie DJ et al. Novel 4-anilinoquinazolines with C-7 basic side chains: design and structure activity relationship of a series of potent, orally active, VEGF receptor tyrosine kinase inhibitors. J Med Chem 2002; 45: 1300–1312.

    Article  CAS  PubMed  Google Scholar 

  91. Bold G, Altmann K-H, Frei J, Lang M, Manley PW, Traxler P et al. New anilinophthalazines as potent and orally well absorbed inhibitors of the VEGF receptor tyrosine kinases useful as antagonists of tumor-driven angiogenesis. J Med Chem 2000; 43: 2310–2323.

    Article  CAS  PubMed  Google Scholar 

  92. Manley PW, Martiny-Baron G, Schlaeppi JM, Wood JM . Anti-VEGF therapy. Expert Opin Biol Ther 2002; 11: 1715–1736.

    CAS  Google Scholar 

  93. Lowinger TB, Riedl B, Dumas J, Smith RA . Design and discovery of small molecules targeting raf-1 kinase. Curr Pharm Des 2002; 8: 2269–2278.

    Article  CAS  PubMed  Google Scholar 

  94. Chen BC, Chang YS, Kang JC, Hsu MJ, Sheu JR, Chen TL et al. Peptidoglycan induces nuclear factor-kappaB activation and cyclooxygenase-2 expression via Ras, Raf-1, and ERK in RAW 264-7 macrophages. J Biol Chem 2004; 279: 20889–20897.

    Article  CAS  PubMed  Google Scholar 

  95. Hall-Jackson CA, Goedert M, Hedge P, Cohen P . Effect of SB 203580 on the activity of c-Raf in vitro and in vivo. Oncogene 1999; 18: 2047–2054.

    Article  CAS  PubMed  Google Scholar 

  96. Gibbs JB . Anticancer drug targets: growth factors and growth factor signaling. J Clin Invest 2000; 105: 9–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cunningham CC, Holmlund JT, Schiller JH, Geary RS, Kwoh TJ, Dorr A et al. A phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res 2000; 6: 1626–1631.

    CAS  PubMed  Google Scholar 

  98. Allen LF, Sebolt-Leopold J, Meyer MB . CI-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Semin Oncol 2003; 30: 105–116.

    Article  CAS  PubMed  Google Scholar 

  99. Kramer BW, Goetz R, Rapp UR . Use of mitogenic cascade blockers for treatment of C-Raf induced lung adenoma in vivo: CI-1040 strongly reduces growth and improves lung structure. BMC Cancer 2004; 4: 24.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Grundhoff A, Ganem D . Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J Clin Invest 2004; 113: 124–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sirianni MC, Vincenzi L, Topino S, Scala E, Angeloni A, Gonnella R et al. Human herpesvirus 8 DNA sequences in CD8+ T cells. J Infect Dis 1997; 176: 541.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Akula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamden, K., Whitman, A., Ford, P. et al. Raf and VEGF: emerging therapeutic targets in Kaposi's sarcoma-associated herpesvirus infection and angiogenesis in hematopoietic and nonhematopoietic tumors. Leukemia 19, 18–26 (2005). https://doi.org/10.1038/sj.leu.2403532

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403532

Keywords

This article is cited by

Search

Quick links