Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Homing and mobilization of hematopoietic stem cells and hematopoietic cancer cells are mirror image processes, utilizing similar signaling pathways and occurring concurrently: circulating cancer cells constitute an ideal target for concurrent treatment with chemotherapy and antilineage-specific antibodies

Abstract

Adhesion molecules and stromal cell-derived factor-1 (SDF-1)/CXCR4 signaling play key role in homing and mobilization of hematopoietic progenitor (HPC) and hematopoietic cancer clonogenic cells (HCC). High expression of VLA-4 is required for homing of HPC and HCC, whereas downregulation of these molecules is required for successful mobilization of HPC and HCC. Upregulation and activation of the SDF-1/CXCR4 signaling is required for homing of HPC and HCC, whereas disruption of the SDF-1 signaling is required for mobilization of HPC and HCC. Hence, mobilizations of HPC and HCC occur concurrently. It is proposed that drug resistance evolves as a result of repeated cycles of chemotherapy. Following each cycle of chemotherapy, HCC lose adhesion molecules and SDF-1 signaling. Surviving cells, released from tumor sites, circulate until re-expression of adhesion molecules and CXCR4 occurs, then homing to stroma of distal tissues occurs. Cytokines secreted by cells in the new microenvironment induce proliferation and drug resistance of HCC. This process is amplified in each cycle of chemotherapy resulting in disease progression. A novel model for treatment is proposed in which circulating HCC are the target for clinical intervention, and concurrent treatment with chemotherapy and antilineage-specific antibodies will result in abrogation of the ‘vicious cycle’ of conventional anticancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Vora AJ, Toh CH, Peel J, Greaves M . Use of granulocyte colony-stimulating factor (G-CSF) for mobilizing peripheral blood stem cells: risk of mobilizing clonal myeloma cells in patients with bone marrow infiltration. Br J Haematol 1994; 86: 180–182.

    CAS  PubMed  Google Scholar 

  2. Bensinger W, Singer J, Appelbaum F, Lilleby K, Longin K, Rowley S et al. Autologous transplantation with peripheral blood mononuclear cells after administration of G-CSF. Blood 1993; 81: 3158–3163.

    CAS  PubMed  Google Scholar 

  3. Chao NJ, Schriber JR, Grimes K, Long GD, Negrin RS, Raimondi CM et al. Granulocyte colony stimulating factor mobilized peripheral blood progenitor cells accelerate granulocyte and platelet recovery after high dose chemotherapy. Blood 1993; 81: 2031–2038.

    CAS  PubMed  Google Scholar 

  4. Lane TA, Law P, Maruyama M, Young D, Burgess J, Mullen M et al. Harvesting and enrichment of HPC mobilized into the peripheral blood of normal donors by GM-CSF or G-CSF: potential role in allogeneic transplantation. Blood 1995; 85: 275–282.

    CAS  PubMed  Google Scholar 

  5. Watts MJ, Sullivan AM, Jamieson E, Pearce R, Fielding A, Devereux S et al. Progenitor-cell mobilization after low-dose cyclophosphamide and granulocyte colony-stimulating factor: an analysis of progenitor-cell quantity and quality and factors predicting for these parameters in 101 pretreated patients with malignant lymphoma. J Clin Oncol 1997; 15: 535–546.

    CAS  PubMed  Google Scholar 

  6. Gazitt Y, Freytes CO, Callander N, Tsai TW, Alsina M, Anderson J et al. Successful PBSC mobilization with high dose G-CSF for patients failing a first round of mobilization. J Hematother 1999; 8: 173–183.

    CAS  PubMed  Google Scholar 

  7. Peters WP, Rosner G, Ross M, Vredenburgh J, Meisenberg B, Gilbert C et al. Comparative effect of GM-CSF and G-CSF on priming of peripheral blood progenitor cells for use with autologous bone marrow after high dose chemotherapy. Blood 1993; 81: 1709–1719.

    CAS  PubMed  Google Scholar 

  8. Lane TA, Ho AD, Bashey A, Peterson S, Young D, Law P . Mobilization of blood-derived stem and progenitor cells in normal subjects by granulocyte–macrophage- and granulocyte-colony-stimulating factors. Transfusion 1999; 39: 39–47.

    CAS  PubMed  Google Scholar 

  9. Winter JN, Lazarus HM, Rademaker A, Villa M, Mangan C, Tallman M et al. Phase I/II study of combined G-CSF and GM-CSF administration for the mobilization of hematopoietic progenitor cells. J Clin Oncol 1996; 14: 277–286.

    CAS  PubMed  Google Scholar 

  10. Spitzer G, Adkins D, Mathews M, Velasquez W, Bowers C, Dunphy F et al. Randomized comparison of G-CSF + GM-CSF vs G-CSF alone for mobilization of peripheral blood stem cells: effects on hematopoietic recovery after high-dose chemotherapy. Bone Marrow Transplant 1997; 20: 921–930.

    CAS  PubMed  Google Scholar 

  11. Weisdorf D, Miller J, Verfaillie C, Burns L, Wagner J, Blazar B et al. Cytokine-primed bone marrow stem cells vs peripheral blood stem cells for autologous transplantation: a randomized comparison of GM-CSF vs. G-CSF. Biol Blood Marrow Transplant 1997; 3: 217–223.

    CAS  PubMed  Google Scholar 

  12. Hohaus S, Martin H, Wassmann B, Egerer G, Haus U, Farber L et al. Recombinant human granulocyte and granulocyte–macrophage colony-stimulating factor (G-CSF and GM-CSF) administered following cytotoxic chemotherapy have a similar ability to mobilize peripheral blood stem cells. Bone Marrow Transplant 1998; 22: 625–630.

    CAS  PubMed  Google Scholar 

  13. Comenzo RL, Sanchorawala V, Fisher C, Akpek G, Farhat M, Cerda S et al. Intermediate-dose intravenous melphalan and blood stem cells mobilized with sequential GM+G-CSF or G-CSF alone to treat AL (amyloid light chain) amyloidosis. Br J Haematol 1999; 104: 553–559.

    CAS  PubMed  Google Scholar 

  14. Siena S, Bregni M, Gianni AM . Mobilization of peripheral blood progenitor cells for autografting: chemotherapy and G-CSF or GM-CSF. Baillieres Best Pract Res Clin Haematol 1999; 12: 27–39.

    CAS  PubMed  Google Scholar 

  15. Madero L, Gonzalez-Vicent M, Molina J, Madero R, Quintero V, Diaz MA . Use of concurrent G-CSF+GM-CSF vs G-CSF alone for mobilization of peripheral blood stem cells in children with malignant disease. Bone Marrow Transplant 2000; 26: 365–369.

    CAS  PubMed  Google Scholar 

  16. Weaver CH, Schulman KA, Wilson-Relyea B, Birch R, West W, Buckner CD . Randomized trial of filgrastim, sargramostim, or sequential sargramostim and filgrastim after myelosuppressive chemotherapy for the harvesting of peripheral-blood stem cells. J Clin Oncol 2000; 18: 43–53.

    CAS  PubMed  Google Scholar 

  17. Koc ON, Gerson SL, Cooper BW, Laughlin M, Meyerson H, Kutteh L et al. Randomized cross-over trial of progenitor-cell mobilization: high-dose cyclophosphamide plus granulocyte colony-stimulating factor (G-CSF) versus granulocyte–macrophage colony-stimulating factor plus G-CSF. J Clin Oncol 2000; 18: 1824–1830.

    CAS  PubMed  Google Scholar 

  18. Weaver C, Schulman K, Buckner C . Mobilization of peripheral blood stem cells following myelosuppressive chemotherapy: a randomized comparison of filgrastim, sargramostim, or sequential sargramostim and filgrastim. Bone Marrow Transplant 2001; 2 (Suppl.): S23–S29.

    Google Scholar 

  19. Gazitt Y, Callander N, Freytes CO, Shaughnessy P, Liu Q, Tsai TW et al. Peripheral blood stem cell mobilization with cyclophosphamide in combination with G-CSF, GM-CSF, or sequential GM-CSF followed by G-CSF in non Hodgkin's lymphoma patients: a randomized prospective study. J Hematother Stem Cell Res 2000; 9: 737–748.

    CAS  PubMed  Google Scholar 

  20. Watanabe T, Dave B, Heimann DG, Jackson JD, Kessinger A, Talmadge JE . Cell adhesion molecule expression on CD34+ cells in grafts and time to myeloid and platelet recovery after autologous stem cell transplantation. Exp Hematol 1998; 26: 10–18.

    CAS  PubMed  Google Scholar 

  21. Watanabe T, Dave B, Heimann DG, Lethaby E, Kessinger A, Talmadge JE . GM-CSF-mobilized peripheral blood CD34+ cells differ from steady-state bone marrow CD34+ cells in adhesion molecule expression. Bone Marrow Transplant 1997; 19: 1175–1181.

    CAS  PubMed  Google Scholar 

  22. Mohle R, Murea S, Kirsch M, Haas R . Differential expression of L-selectin, VLA-4, and LFA-1 on CD34+ progenitor cells from bone marrow and peripheral blood during G-CSF-enhanced recovery. Exp Hematol 1995; 23: 1535–1542.

    CAS  PubMed  Google Scholar 

  23. Dercksen MW, Gerritsen WR, Rodenhuis S, Dirkson MK, Slaper-Cortenbach IC, Schaasberg WP et al. Expression of adhesion molecules on CD34+ cells: CD34+ L-selectin+ cells predict a rapid platelet recovery after peripheral blood stem cell transplantation. Blood 1995; 85: 3313–3319.

    CAS  PubMed  Google Scholar 

  24. Kroger N, Zeller W, Hassan HT, Dierlamm J, Zander AR . Differences between the expression of adhesion molecules on CD34+ cells from bone marrow and G-CSF mobilized peripheral blood. Stem Cells 1998; 16: 49–53.

    CAS  PubMed  Google Scholar 

  25. Fruehauf S, Veldwijk MR, Kramer A, Haas R, Zeller WJ . Delineation of cell cycle state and correlation to adhesion molecule expression of human CD34+ cells from steady-state bone marrow and peripheral blood mobilized following G-CSF-supported chemotherapy. Stem Cells 1998; 16: 271–279.

    CAS  PubMed  Google Scholar 

  26. Simmons PJ, Masinovsky B, Longenecker BM, Berenson R, Torok-Storb B, Gallatin WM . Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood 1992; 80: 388–395.

    CAS  PubMed  Google Scholar 

  27. Vermeulen M, Le Pesteur F, Gagnerault MC, Mary JY, Sainteny F, Lepault F . Role of adhesion molecules in the homing and mobilization of murine hematopoietic stem and progenitor cells. Blood 1998; 92: 894–900.

    CAS  PubMed  Google Scholar 

  28. Kikuta T, Shimazaki C, Ashihara E, Sudo Y, Hirai H, Sumikuma T et al. Mobilization of hematopoietic primitive and committed progenitor cells into blood in mice by anti-vascular adhesion molecule-1 antibody alone or in combination with granulocyte colony stimulating factor. Exp Hematol 2000; 28: 311–317.

    CAS  PubMed  Google Scholar 

  29. Craddock CF, Nakamoto B, Andrews RG, Priestley GV, Papayannopoulou T . Antibodies to VLA4 integrin mobilize long-term repopulating cells and augment cytokine-induced mobilization in primates and mice. Blood 1997; 90: 4779–4788.

    CAS  PubMed  Google Scholar 

  30. Papayannopoulou T, Priestley GV, Nakamoto B . Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway. Blood 1998; 91: 2231–2239.

    CAS  PubMed  Google Scholar 

  31. Papayanopoulou T . Mechanism of stem/progenitor cell mobilization: the anti-VLA4 paradigm. Semin Hematol 2000; 37: 11–18.

    Google Scholar 

  32. Koenig JM, Baron S, Luo D, Benson NA, Deisseroth AB . L-Selectin expression enhances clonogenesis of CD34+ cord blood progenitors. Pediatric Res 1999; 45: 867–870.

    CAS  Google Scholar 

  33. Voermans C, Rood PML, Hordijk PL, Gerritsen WR, van der Schoot CE . Adhesion molecules involved in transendothelial migration of human hematopoietic progenitor cells. Stem Cells 2000; 18: 435–443.

    CAS  PubMed  Google Scholar 

  34. Gazitt Y, Shaughnessy P, Liu Q . Expression of adhesion molecules on CD34+ cells in mobilized peripheral blood of non-Hodgkin's lymphoma patients. Stem Cells 2001; 19: 134–143.

    CAS  PubMed  Google Scholar 

  35. Legras S, Levesque JP, Charrad R, Morimoto K, Le Bousse C, Clay D et al. CD44-mediated adhesiveness of human hematopoietic progenitors to hyaluronan is modulated by cytokines. Blood 1997; 89: 1905–1914.

    CAS  PubMed  Google Scholar 

  36. Ghaffari S, Smadja-Joffe F, Oostendorp R, Levesque JP, Dougherty G, Eaves A et al. CD44 isoforms in normal and leukemic hematopoiesis. Exp Hematol 1999; 27: 978–993.

    CAS  PubMed  Google Scholar 

  37. Lee S, Im SA, Yoo E-S, Nam EM, Lee MA, Ahn JY et al. Mobilization kinetics of CD34+ cells with modulation of CD44 and CD31 expression during continuous intravenous administration of G-CSF in normal donors. Stem Cells 2000; 18: 281–286.

    CAS  PubMed  Google Scholar 

  38. Fu S, Liesveld J . Mobilization of hematopoietic stem cells. Blood Rev 2000; 14: 205–218.

    CAS  PubMed  Google Scholar 

  39. Kronenwett R, Martin S, Haas R . The role of cytokines and adhesion molecules for mobilization of peripheral blood stem cells. Stem Cells 2000; 18: 320–330.

    CAS  PubMed  Google Scholar 

  40. Fibbe WE, Pruijt JF, van Kooyk Y, Figdor CG, Opdenakker G, Willemze R . The role of metalloproteinases and adhesion molecules in interleukin-8-induced stem-cell mobilization. Semin Hematol 2000; 37 (1 Suppl. 2): 19–24.

    CAS  PubMed  Google Scholar 

  41. Gazitt Y . Immunological profiles of effector cells and CD34+ cells mobilized with different growth factors. Stem cells 2001; 18: 390–398.

    Google Scholar 

  42. Williams DA, Rios M, Stephens C, Patel VP . Fibronectin and VLA-4 in haematopoietic stem cell–microenvironment interactions. Nature 1991; 352: 438–444.

    CAS  PubMed  Google Scholar 

  43. Simmons PJ, Levesque JP, Zannettino AC . Adhesion molecules in haemopoiesis. Baillieres Clin Haematol 1997; 10: 485–505.

    CAS  PubMed  Google Scholar 

  44. Prosper F, Stroncek D, McCarthy JB, Verfaillie CM . Mobilization and homing of peripheral blood progenitors is related to reversible downregulation of alpha 4 beta1 integrin expression and function. J Clin Invest 1998; 101: 2456–2467.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bellucci R, De Propris MS, Buccisano F, Lisci A, Leone G, Tabilio A et al. Modulation of VLA-4 and L-selectin expression on normal CD34+ cells during mobilization with G-CSF. Bone Marrow Transplant 1999; 23: 1–8.

    CAS  PubMed  Google Scholar 

  46. Gazitt Y . Recent developments in the regulation of peripheral blood stem cell mobilization. J Hematother Stem Cell Res 2001; 10: 229–236.

    CAS  PubMed  Google Scholar 

  47. Lapidot T . Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-1/CXCR4 interactions. Ann NY Acad Sci 2001; 938: 83–95.

    CAS  PubMed  Google Scholar 

  48. Lapidot T, Kollet O . The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m (null) mice. Leukemia 2002; 16: 1992–2003.

    CAS  PubMed  Google Scholar 

  49. Gazitt Y . Comparison between granulocyte colony-stimulating factor and granulocyte–macrophage colony-stimulating factor in the mobilization of peripheral blood stem cells. Curr Opin Hematol 2002; 9: 190–198.

    PubMed  Google Scholar 

  50. Lapidot T, Petit I . Current understanding of stem cell mobilization. The roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 2002; 30: 973–981.

    CAS  PubMed  Google Scholar 

  51. Pelus LM, Horowitz D, Cooper SC, King AG . Peripheral blood stem cell mobilization. A role for CXC chemokines. Crit Rev Oncol-Hematol 2002; 43: 257–275.

    PubMed  Google Scholar 

  52. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002; 3: 687–694.

    CAS  PubMed  Google Scholar 

  53. Mohle R, Bautz F, Rafii R, Moore MA, Brugger W, Kanz L . The chemokine receptor CXCR4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 1998; 91: 4523–4530.

    CAS  PubMed  Google Scholar 

  54. Viardot A, Kronenwett R, Deichmann M, Haas R . The human immunodeficiency virus (HIV)-type 1 coreceptor CXCR-4 (fusin) is preferentially expressed on the more immature CD34+ hematopoietic stem cells. Ann Hematol 1998; 77: 193–197.

    CAS  PubMed  Google Scholar 

  55. Murdoch C . CXCR4: a chemokine extraordinaire. Immunol Rev 2000; 177: 175–184.

    CAS  PubMed  Google Scholar 

  56. Lee B, Ratajczak J, Doms RW, Gewirtz AM, Ratajczak MZ . Coreceptor/chemokine receptor expression on human hematopoietic cells: biological implications for human immunodeficiency virus-type 1 infection. Blood 1999; 93: 1145–1156.

    CAS  PubMed  Google Scholar 

  57. Aiuti A, Turchetto L, Cota M, Cipponi A, Brambilla A, Arcelloni C et al. Human CD34+ cells express CXCR4 and its ligand stromal cell-derived factor-1. Implications for infection by T-cell tropic human immunodeficiency virus. Blood 1999; 94: 62–67.

    CAS  PubMed  Google Scholar 

  58. Aiuti A, Tavian M, Cipponi A, Ficara F, Zappone E, Hoxie J et al. Expression of CXCR4, the receptor for stromal cell-derived factor-1 on fetal and adult human lympho-hematopoietic progenitors. Eur J Immunol 1999; 29: 1823–1831.

    CAS  PubMed  Google Scholar 

  59. Lattaillade J-J, Clay D, Dupuy C, Rigal S, Jasmin C, Bourin P et al. Chemokine SDF-1 enhances circulating CD34+ cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood 2000; 95: 756–768.

    Google Scholar 

  60. Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL . Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med 2002; 195: 1145–1154.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Onai N, Zhang YY, Yoneyama H, Kitamura T, Ishikawa S, Matsushima K . Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow hematopoietic progenitor cells expressing SDF-1-intrakine. Blood 2000; 96: 2074–2080.

    CAS  PubMed  Google Scholar 

  62. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999; 283: 845–848.

    Article  CAS  PubMed  Google Scholar 

  63. Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J Clin Invest 1999; 104: 1199–1211.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kollet O, Peled A, Byk T, Ben-Hur H, Greiner D, Shultz L et al. beta2 microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood 2000; 95: 3102–3105.

    CAS  PubMed  Google Scholar 

  65. Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V et al. The chemokine SDF-1 activates the integrin LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 2000; 95: 3289–3296.

    CAS  PubMed  Google Scholar 

  66. Voermans C, Kooi ML, Rodenhuis S, van der Lelie H, van der Schoot CE, Gerritsen WR . In vitro migratory capacity of CD34+ cells is related to hematopoietic recovery after autologous stem cell transplantation. Blood 2001; 97: 799–804.

    CAS  PubMed  Google Scholar 

  67. Shen H, Cheng T, Olszak I, Garcia-Zepeda E, Lu Z, Herrmann S et al. CXCR-4 desensitization is associated with tissue localization of hemopoietic progenitor cells. J Immunol 2001; 166: 5027–5033.

    CAS  PubMed  Google Scholar 

  68. Sweeney EA, Papayannopoulou T . Increase in circulating SDF-1 after treatment with sulfated glycans. The role of SDF-1 in mobilization. Ann NY Acad Sci 2001; 938: 48–52.

    CAS  PubMed  Google Scholar 

  69. Sweeney EA, Lortat-Jacob H, Priestley GV, Nakamoto B, Papayannopoulou T . Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells. Blood 2002; 99: 44–51.

    CAS  PubMed  Google Scholar 

  70. Kronenwett R, Martin S, Haas R . The role of cytokines and adhesion molecules for mobilization of peripheral blood stem cells. Stem Cells 2001; 18: 320–330.

    Google Scholar 

  71. Plett PA, Frankovitz SM, Wolber FM, Abonour R, Orschell-Traycoff CM . Treatment of circulating CD34(+) cells with SDF-1alpha or anti-CXCR4 antibody enhances migration and NOD/SCID repopulating potential. Exp Hematol 2002; 30: 1061–1069.

    CAS  PubMed  Google Scholar 

  72. Glimm H, Tang P, Clark-Lewis I, von Kalle C, Eaves C . Ex vivo treatment of proliferating human cord blood stem cells with stroma-derived factor-1 enhances their ability to engraft NOD/SCID mice. Blood 2002; 99: 3454–3457.

    CAS  PubMed  Google Scholar 

  73. Rosu-Myles M, Gallacher L, Murdoch B, Hess DA, Keeney M, Kelvin D et al. The human hematopoietic stem cell compartment is heterogeneous for CXCR4 expression. Proc Natl Acad Sci USA 2000; 97: 14626–14631.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gazitt Y, Liu Q . Plasma levels of SDF-1 and expression of SDF-1 receptor on CD34+ cells in mobilized peripheral blood of non-Hodgkin's lymphoma patients. Stem Cells 2001; 19: 37–45.

    CAS  PubMed  Google Scholar 

  75. Hendrix CW, Flexner C, MacFarland RT, Giandomenico C, Fuchs EJ, Redpath E et al. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob Agents Chemother 2000; 44: 1667–1673.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Maeda K, Yoshimura K, Shibayama S, Habashita H, Tada H, Sagawa K et al. Novel low molecular weight spirodiketopiperazine derivatives potently inhibit R5 HIV-1 infection through their antagonistic effects on CCR5. J Biol Chem 2001; 276: 35194–35200.

    CAS  PubMed  Google Scholar 

  77. Hatse S, Princen K, Bridger G, De Clercq E, Schols D . Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett 2002; 527: 255–262.

    CAS  PubMed  Google Scholar 

  78. Tremblay CL, Kollmann C, Giguel F, Chou TC, Hirsch MS . Strong in vitro synergy between the fusion inhibitor T-20 and the CXCR4 blocker AMD-3100. J Acq Immune Def Synd Human Retrovirol 2000; 25: 99–102.

    CAS  Google Scholar 

  79. Tamamura H, Hiramatsu K, Miyamoto K, Omagari A, Oishi S, Nakashima H et al. Synthesis and evaluation of pseudopeptide analogues of a specific CXCR4 inhibitor, T140: the insertion of an (E)-alkene dipeptide isostere into the betaII′-turn moiety. Bioorg Med Chem Lett 2002; 12: 923–928.

    CAS  PubMed  Google Scholar 

  80. King AG, Horowitz D, Dillon SB, Levin R, Farese AM, MacVittie TJ et al. Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRObeta. Blood 2002; 97: 1534–1542.

    Google Scholar 

  81. Pelus LM, Bian H, Fukuda S, Wong D, Merzouk A, Salari H . CHCCE0021, a peptide agonist of stromal cell-derived factor-1 alpha (SDF-1), rapidly mobilizes polymorphonuclear neutrophils (PMN) and hematopoietic stem and progenitor cells following single administration and synergizes with G-CSF for both effects. Blood 2002; 100: 608a.

    Google Scholar 

  82. Liles WC, Rodger E, Broxmeyer HE, Srour FE, Dehner CK, Calandra C et al. Mobilization and collection of CD34+progenitor cells from normal human volunteers with AMD-3100, a CXCR4 antagonist, and G-CSF. Blood 2002; 100: 109a.

    Google Scholar 

  83. Broxmeyer HE, Hangoc G, Cooper S, Li X, Bridger G, Clapp DW . AMD3100, an antagonist of CXCR4 and mobilizer of myeloid progenitor cells, is a potent mobilizer of competitive repopulating long term marrow self-renewing stem cells in mice. Blood 2002; 100: 609a.

    Google Scholar 

  84. Valenzuela-Fernandez A, Planchenault T, Baleux F, Staropoli I, Le-Barillec K, Leduc D et al. Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem 2002; 277: 15677–15689.

    CAS  PubMed  Google Scholar 

  85. Levesque JP, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ . Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 2002; 30: 440–449.

    CAS  PubMed  Google Scholar 

  86. Levesque JP, Bendall LJ, Hendy J, Takamatzu Y, Simmons PJ . Neutrophil enzymes degrade CXCR4 on CD34+ progenitors: implications for progenitor cell mobilization. Blood 2002; 100: 107a.

    Google Scholar 

  87. Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ . Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111: 187–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. van Os R, van Schie ML, Willemze R, Fibbe WE . Proteolytic enzyme levels are increased during granulocyte colony-stimulating factor-induced hematopoietic stem cell mobilization in human donors but do not predict the number of mobilized stem cells. J Hematother Stem Cell Res 2002; 11: 513–521.

    CAS  PubMed  Google Scholar 

  89. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109: 625–637.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Christopherson II KW, Hangoc G, Broxmeyer HE . Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 2002; 169: 7000–7008.

    CAS  PubMed  Google Scholar 

  91. Laterveer L, Lindley IJ, Hamilton MS, Willemze R, Fibbe WE . Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long term myelolymphoid repopulating ability. Blood 1995; 85: 2269–2275.

    CAS  PubMed  Google Scholar 

  92. Fibbe WE, Pruijt JF, van Kooyk Y, Figdor CG, Opdenakker G, Willemze R . The role of metalloproteinasae and adhesion molecules in interleulin-8-induced stem cell mobilization. Semin Hematol 2000; 37 (1 Suppl. 2): 19–24.

    CAS  PubMed  Google Scholar 

  93. Pruijt JF, Fibbe WF, Laterveer L, Pieters RA, Lindley IJ, Paemen L et al. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci USA 1999; 96: 10863–10868.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kinashi T, Springer TA . Steel factor and c-kit regulate cell matrix adhesion. Blood 1994; 83: 1033–1038.

    CAS  PubMed  Google Scholar 

  95. Levesque JP, Leavesley DI, Niutta S, Vadas M, Simmons PJ . Cytokines increase human hematopoietic cell adhesiveness by activation of very late antigen (VLA)-4 and VLA-5 integrins. J Exp Med 1995; 181: 1805–1815.

    CAS  PubMed  Google Scholar 

  96. Levesque JP, Haylock DN, Simmons PJ . Cytokine regulation of proliferation and cell adhesion are correlated events in human CD34+ hemopoietic progenitors. Blood 1996; 88: 1168–1176.

    CAS  PubMed  Google Scholar 

  97. Hidalgo A, Sanz-Rodriguez F, Rodriguez-Fernandez J, Albella B, Blaya C, Wright N et al. Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells. Exp Hematol 2001; 29: 345–355.

    CAS  PubMed  Google Scholar 

  98. Rosstamanith T, Schroder B, Bug G, Muller P, Klenner T, Knaus R et al. Interleukin 3 improves the ex vivo expansion of primitive human cord blood progenitor cells and maintains the engraftment potential of SCID repopulating cells. Stem Cells 2001; 19: 313–320.

    Google Scholar 

  99. Lee Y, Gotoh A, Kwon HJ, You M, Kohli L, Mantel C et al. Enhancement of intracellular signaling associated with hematopoietic progenitor cell survival in response to SDF-1/CXCL12 in synergy with other cytokines. Blood 2002; 99: 4307–4317.

    CAS  PubMed  Google Scholar 

  100. Kollet O, Petit I, Kahn J, Samira S, Dar A, Peled A et al. Human CD34+CXCR4− sorted cells harbor intracellular CXCR4 which can be functionally expressed and provide NOD/SCID repopulation. Blood 2002; 100: 2778–2785.

    CAS  PubMed  Google Scholar 

  101. Sharp JG, Joshi SS, Armitage JO, Bierman P, Coccia PF, Harrington DS et al. Significance of detection of occult non-Hodgkin's lymphoma in histologically uninvolved bone marrow by aculture technique. Blood 1992; 79: 1074–1079.

    CAS  PubMed  Google Scholar 

  102. Dreyfus F, Ribrag V, Leblond V, Ravaud P, Melle J, Quarre MC et al. Delection of malignant B cells in peripheral blood stem cell collections after chemotherapy in patients with multiple myeloma. Bone Marrow Transplant 1995; 15: 707–712.

    CAS  PubMed  Google Scholar 

  103. Gazitt Y, Shaughnessy P, Liu Q . Differential mobilization of CD34+ stem cells and lymphoma cells in non-Hodgkin's lymphoma patients mobilized with cyclophosphamide with different growth factors. J Hematother Stem Cell Res 2001; 10: 167–176.

    CAS  PubMed  Google Scholar 

  104. Gazitt Y, Reading C, Hoffman R, Wickrema A, Vesole DH, Jagannath S et al. Purified CD34+ Lin Thy+ stem cells do not contain clonal myeloma cells. Blood 1995; 86: 381–389.

    CAS  PubMed  Google Scholar 

  105. Gazitt Y, Tian E, Barlogie B, Reading CL, Vesole DH, Jagannath S et al. Differential mobilization of myeloma cells and normal hematopoietic stem cells in multiple myeloma after treatment with cyclophosphamide and GM-CSF. Blood 1996; 87: 805–811.

    CAS  PubMed  Google Scholar 

  106. Gazitt Y, Reading C . Autologous transplantation with tumor-free graft: a model for multiple myeloma. Leuk Lymphoma 1996; 27: 202–212.

    Google Scholar 

  107. Tricot G, Gazitt Y, Leemhuis T, Jagannath S, Desikan KR, Siegel D et al. Collection, engraftment kinetics and tumor contamination of highly purified hematopoietic progenitor cells to support high dose therapy in multiple myeloma. Blood 1998; 91: 4489–4495.

    CAS  PubMed  Google Scholar 

  108. Moss TJ, Cairo M, Santana VM, Weinthal J, Hurvitz C, Bostrom B . Clonogenic circulating BM cells: implications regarding peripheral stem cell transplantation. Blood 1994; 83: 3085–3090.

    CAS  PubMed  Google Scholar 

  109. Brugger W, Bross KJ, Glatt M, Weber F, Mertelsmann R, Kanz L . Mobilization of tumor cells and hematopoietic stem cells into peripheral blood of patients with solid tumors. Blood 1994; 83: 636–640.

    CAS  PubMed  Google Scholar 

  110. Shpall EJ, Jones R . Release of tumor cells from bone marrow. Blood 1994; 83: 623–628.

    CAS  PubMed  Google Scholar 

  111. Stewart AK, Vescio R, Schiller G, Ballester O, Noga S, Rugo H et al. Purging of autologous peripheral-blood stem cells using CD34 selection does not improve overall or progression-free survival after high-dose chemotherapy for multiple myeloma: results of a multicenter randomized controlled trial. J Clin Oncol 2001; 19: 3771–3779.

    CAS  PubMed  Google Scholar 

  112. Shpall EJ, Jones RB, Bearman SI, Cagnoni PJ, Nieto Y, McNiece IK . Peripheral blood stem cell transplantation in breast cancer. Bailliere's Best Pract Clin Haematol 1999; 12: 219–232.

    CAS  Google Scholar 

  113. Robledo MM, Sanz-Rodriguez F, Hidalgo A, Teixidó J . Differential use of VLA-4 and -5 integrins by hematopoietic precursors and myeloma cells to adhere to bone marrow stroma. J Biol Chem 1998; 273: 12056–12060.

    CAS  PubMed  Google Scholar 

  114. Okada T, Hawley RG, Kodaka M, Okuno H . Significance of VLA-4–VCAM-1 interaction and CD44 for transendothelial invasion in a bone marrow metastatic myeloma model. Clin Exp Metastas 1999; 17: 623–629.

    CAS  Google Scholar 

  115. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS . Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999; 93: 1658–1667.

    CAS  PubMed  Google Scholar 

  116. Choi SJ, Oba Y, Gazitt Y, Alsina M, Cruz J, Anderson J et al. Antisense inhibition of macrophage inflammatory protein-1-alpha blocks bone destruction in a model of myeloma bone disease. J Clin Invest 2001; 108: 1833–1841.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Gazitt Y, Akay C, Thomas C, Long L . The role of adhesion molecules and CXCR4/SDF-1 axis in mobilization of malignant myeloma cells. Cancer Res 2003; 94: p524a.

    Google Scholar 

  118. Sanz-Rodríguez F, Hidalgo A, Teixidó J . Chemokine stromal cell-derived factor-1 modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 2001; 97: 346–351.

    PubMed  Google Scholar 

  119. Khaldoyanidi S, Achtnich M, Hehlmann R, Zöller M . Expression of CD44 variant isoforms in peripheral blood leukocytes in malignant lymphoma and leukemia: inverse correlation between expression and tumor progression. Leuk Res 1996; 20: 839–851.

    CAS  PubMed  Google Scholar 

  120. Stauder R, van Driel M, Schwarzler C, Thaler J, Lokhorst HM, Kreuser ED et al. Different CD44 splicing patterns define prognostic subgroups in multiple myeloma. Blood 1996; 88: 3101–3108.

    CAS  PubMed  Google Scholar 

  121. Masellis-Smith A, Belch AR, Mant MJ, Pilarski LM . Adhesion of multiple myeloma peripheral blood B cells to bone marrow fibroblasts: a requirement for CD44 and alpha4beta7. Cancer Res 1997; 57: 930–936.

    CAS  PubMed  Google Scholar 

  122. Asosingh K, Gunthert U, De Raeve H, Van Riet I, Van Camp B, Vanderkerken K . A unique pathway in the homing of murine multiple myeloma cells: CD44v10 mediates binding to bone marrow endothelium. Cancer Res 2001; 61: 2862–2865.

    CAS  PubMed  Google Scholar 

  123. Van Driel M, Gunthert U, van Kessel AC, Joling P, Stauder R, Lokhorst HM et al. CD44 variant isoforms are involved in plasma cell adhesion to bone marrow stromal cells. Leukemia 2002; 16: 135–143.

    CAS  PubMed  Google Scholar 

  124. Vincent T, Molina L, Espert L, Mechti N . Hyaluronan, a major non-protein glycosaminoglycan component of the extracellular matrix in human bone marrow, mediates dexamethasone resistance in multiple myeloma. Br J Haematol 2003; 121: 259–269.

    CAS  PubMed  Google Scholar 

  125. Libura J, Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M et al. CXCR4–SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood 2002; 100: 2597–2606.

    CAS  PubMed  Google Scholar 

  126. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK . Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 2002; 62: 1832–1837.

    CAS  PubMed  Google Scholar 

  127. Schrader AJ, Lechner O, Templin M, Dittmar KE, Machtens S, Mengel M et al. CXCR4/CXCL12 expression and signaling in kidney cancer. Br J Cancer 2002; 86: 1250–1256.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Payne AS, Cornelius LA . The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol 2002; 118: 915–922.

    CAS  PubMed  Google Scholar 

  129. Burger JA, Burger M, Kipps TJ . Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath BM stromal cells. Blood 1999; 94: 3658–3667.

    CAS  PubMed  Google Scholar 

  130. Burger JA, Kipps TJ . Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leuk Lymphoma 2002; 43: 461–466.

    CAS  PubMed  Google Scholar 

  131. Majka M, Pituch-Noworolska A, Drukala J, Baj-Krzyworzeka M, Malee E, Peiper SC et al. SDF-1/CXCR4 interactions are crucial in the migration and survival of chronic lymphocytic leukemia cells in the bone marrow microenvironment. Blood 2002; 100: 516a.

    Google Scholar 

  132. Durig J, Schmucker U, Duhrsen U . Differential expression of chemokine receptors in B cell malignancies. Leukemia 2001; 15: 752–756.

    CAS  PubMed  Google Scholar 

  133. Donnard M, Trimoreau F, Jaccard A, Gachard N, Petit B, Couraud MJ et al. Chemokines receptor expression profile in low grade non Hodgkin lymphoma with leukemic phase. Blood 2002; 100: 349a.

    Google Scholar 

  134. Durig J, Rosenthal C, Elmaagacli A, Heyworth C, Halfmeyer K, Kasper C et al. Biological effects of stroma-derived factor-1 alpha on normal and CML CD34+ haemopoietic cells. Leukemia 2000; 14: 1652–1660.

    CAS  PubMed  Google Scholar 

  135. Mohle R, Schittenhelm M, Failenschmid C, Bautz F, Kratz-Albers K, Serve H et al. Functional response of leukaemic blasts to stromal cell-derived factor-1 correlates with preferential expression of the chemokine receptor CXCR4 in acute myelomonocytic and lymphoblastic leukaemia. Br J Haematol 2000; 110: 563–572.

    CAS  PubMed  Google Scholar 

  136. Shen W, Bendall LJ, Gottlieb DJ, Bradstock KF . The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow. Exp Hematol 2001; 29: 1439–1447.

    CAS  PubMed  Google Scholar 

  137. Peled A, Hardan I, Trakhtenbrot L, Gur E, Magid M, Darash-Yahana M et al. Immature leukemic CD34+CXCR4+ cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1. Stem Cells 2002; 20: 259–266.

    CAS  PubMed  Google Scholar 

  138. Moller C, Stromberg T, Juremalm M, Nilsson K, Nilsson G . Expression and function of chemokine receptors in human multiple myeloma. Leukemia 2003; 17: 203–210.

    CAS  PubMed  Google Scholar 

  139. Hideshima T, Chauhan D, Hayashi T, Podar K, Akiyama M, Gupta D et al. The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. Mol Cancer Therap 2002; 1: 539–544.

    CAS  Google Scholar 

  140. Bertolini F, Dell'Agnola C, Mancuso P, Rabascio C, Burlini A, Monestiroli S et al. CXCR4 neutralization, a novel therapeutic approach for non-Hodgkin's lymphoma. Cancer Res 2002; 62: 3106–3112.

    CAS  PubMed  Google Scholar 

  141. Lagneaux L, Delforge A, Dejeneffe M, Dejeneffe M, Schols D, Massy MM et al. Antagonists of the chemokine receptor CXCR4 block chemotaxis and inhibit stromal dependent proliferation of acute lymphoblastic leukemia cells. Blood 2002; 100: 381a.

    Google Scholar 

  142. Boehmler AM, Kuci S, Seitz G, Kimura T, Wirsner T, Brinkmann V et al. In vitro and preclinical activity of the novel AMD3100 CXCR4 antagonist in lymphoma models. Blood 2002; 100: 608a.

    Google Scholar 

  143. Schwarz MK, Wells TN . New therapeutics that modulate chemokine networks. Nat Rev 2002; 1: 347–358.

    CAS  Google Scholar 

  144. Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2002; 2: 289–300.

    CAS  PubMed  Google Scholar 

  145. van Kempen LC, Coussens LM . MMP9 potentiates pulmonary metastasis formation. Cancer Cell 2002; 2: 251–252.

    CAS  PubMed  Google Scholar 

  146. McKenna GJ, Chen Y, Smith RM, Meneghetti A, Ong C, McMaster R et al. A role for matrix metalloproteinases and tumor host interaction in hepatocellular carcinomas. Am J Surg 2002; 183: 588–594.

    CAS  PubMed  Google Scholar 

  147. Kallakury BV, Karikehalli S, Haholu A, Sheehan CE, Azumi N, Ross JS . Increased expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinases 1 and 2 correlate with poor prognostic variables in renal cell carcinoma. Clin Cancer Res 2001; 7: 3113–3119.

    CAS  PubMed  Google Scholar 

  148. Benassi MS, Gamberi G, Magagnoli G, Molendini L, Ragazzini P, Merli M et al. Metalloproteinase expression and prognosis in soft tissue sarcomas. Ann Oncol 2001; 12: 75–80.

    CAS  PubMed  Google Scholar 

  149. Horikawa T, Yoshizaki T, Sheen TS, Lee SY, Furukawa M . Association of latent membrane protein 1 and matrix metalloproteinase 9 with metastasis in nasopharyngeal carcinoma. Cancer 2000; 89: 715–723.

    CAS  PubMed  Google Scholar 

  150. Jimenez RE, Hartwig W, Antoniu BA, Compton CC, Warshaw AL, Fernandez-Del Castillo C . Effect of matrix metalloproteinase inhibition on pancreatic cancer invasion and metastasis: an additive strategy for cancer control. Ann Surg 2000; 231: 644–654.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Gong YL, Xu GM, Huang WD, Chen LB . Expression of matrix metalloproteinases and the tissue inhibitors of metalloproteinases and their local invasiveness and metastasis in Chinese human pancreatic cancer. J Surg Oncol 2000; 73: 95L–99L.

    Google Scholar 

  152. Sausville EA . The challenge of pathway and environment-mediated drug resistance. Cancer Metastas Rev 2001; 20: 117–122.

    CAS  Google Scholar 

  153. Mudry RE, Fortney JE, York T, Hall BM, Gibson LF . Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood 2000; 96: 1926–1932.

    CAS  PubMed  Google Scholar 

  154. Gibson LF . Survival of B lineage leukemic cells: signals from the bone marrow microenvironment. Leuk Lymphoma 2002; 43: 19–27.

    CAS  PubMed  Google Scholar 

  155. Jourdan M, De Vos J, Mechti N, Klein B . Regulation of Bcl-2-family proteins in myeloma cells by three myeloma survival factors: interleukin-6, interferon-alpha and insulin-like growth factor 1. Cell Death Differ 2000; 7: 1244–1252.

    CAS  PubMed  Google Scholar 

  156. Chatterjee M, Honemann D, Lentzsch S, Bommert K, Sers C, Herrmann P et al. In the presence of bone marrow stromal cells human multiple myeloma cells become independent of the IL-6/gp130/STAT3 pathway. Blood 2002; 100: 3311–3318.

    CAS  PubMed  Google Scholar 

  157. Lauta VM . A review of the cytokine network in multiple myeloma. Cancer 2003; 97: 2440–2452.

    CAS  PubMed  Google Scholar 

  158. Bisping G, Leo R, Wenning D, Dankbar B, Padro T, Kropff M et al. Paracrine interactions of basic fibroblast growth factor and interleukin-6 in multiple myeloma. Blood 2003; 101: 2775–2783.

    CAS  PubMed  Google Scholar 

  159. Landowski TH, Olashaw NE, Agrawal D, Dalton WS . Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-kappaB (RelB/p50) in myeloma cells. Oncogene 2003; 22: 2417–2421.

    CAS  PubMed  Google Scholar 

  160. Dalton WS . The tumor microenvironment: focus on myeloma. Cancer Treat Rev 2003; 29 (Suppl. 1): 11–19.

    CAS  PubMed  Google Scholar 

  161. Hideshima T, Anderson KC . Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev 2002; 2: 927–937.

    CAS  Google Scholar 

  162. Cheson BD . Hematologic malignancies: new developments and future treatments. Semin Oncol 2002; 29 (4 Suppl. 13): 33–45.

    PubMed  Google Scholar 

  163. Tallman MS . Monoclonal antibody therapies in leukemias. Semin Hematol 2002; 39 (4 Suppl. 3): 12–19.

    CAS  PubMed  Google Scholar 

  164. Tallman MS . Advancing the treatment of hematologic malignancies through the development of targeted interventions. Semin Hematol 2002; 39 (4 Suppl. 3): 1–5.

    PubMed  Google Scholar 

  165. McCune SL, Gockerman JP, Moore JO, Decastro CM, Bass AJ, Chao NJ et al. Alemtuzumab in relapsed or refractory chronic lymphocytic leukemia and prolymphocytic leukemia. Leuk Lymphoma 2002; 43: 1007–1111.

    CAS  PubMed  Google Scholar 

  166. Dumont FJ . Campath-1H (alemtuzumab) for the treatment of chronic lymphocytic leukemia and beyond. Expert Rev Anticancer Ther 2002; 2: 23–35.

    CAS  PubMed  Google Scholar 

  167. Schmitt B, Wendtner CM, Bergmann M, Busch R, Franke A, Pasold R et al. Fludarabine combination therapy for the treatment of chronic lymphocytic leukemia. Clin Lymphoma 2002; 3: 26–35.

    CAS  PubMed  Google Scholar 

  168. Kennedy B, Rawstron A, Carter C, Ryan M, Speed K, Lucas G et al. Campath-1H and fludarabine in combination are highly active in refractory chronic lymphocytic leukemia. Blood 2002; 99: 2245–2247.

    CAS  PubMed  Google Scholar 

  169. Tang SC, Hewitt K, Reis MD, Berinstein NL . Immunosuppressive toxicity of Campath-1H MOAB in the treatment of patients with low grade lymphoma. Leuk Lymphoma 1996; 24: 93–101.

    CAS  PubMed  Google Scholar 

  170. Khorana A, Bunn P, McLaughlin P, Vose J, Stewart C, Czuczman MS . A phase II multicenter study of Campath 1H antibody in previously treated patients with non bulky NHL. Leuk Lymphoma 2001; 41: 77–87.

    CAS  PubMed  Google Scholar 

  171. Uppenkamp M, Engert A, Diehl V, Bunjes D, Huhn D, Brittinger G . Monoclonal antibody therapy with Campath-1H in patients with relapsed high and low grade NHL a multicenter phase I/II study. Ann Hematol 2002; 81: 26–32.

    CAS  PubMed  Google Scholar 

  172. Cheson BD . Rituximab: clinical development and future directions. Expert Opin Biol Ther 2002; 2: 97–110.

    CAS  PubMed  Google Scholar 

  173. Derigs HG . In vitro and in vivo purging of B lymphoma cells from stem-cell products using anti-CD20 Abs. Cytotherapy 2002; 2: 445–453.

    Google Scholar 

  174. Flohr T, Hess G, Kolbe K, Gamm H, Nolte H, Stanislawski T et al. Rituximab in vivo purging is safe and effective in combination with CD34+ selected autologous stem cell transplantation for salvage therapy in B-NHL. Bone Marrow Transplant 2002; 29: 769–775.

    CAS  PubMed  Google Scholar 

  175. Hess G, Flohr T, Derigs HG . Rituximab as in vivo purging agent in autologous stem cell transplantation for relapsed B-NHL. Ann Hematol 2002; 81 (Suppl. 2): S54–S55.

    CAS  PubMed  Google Scholar 

  176. Hess G, Flohr T, Huber C, Kolbe K, Derigs HG, Fischer T . Safety and feasibility of CHOP/rituximab induction treatment followed by high-dose chemo/radiotherapy and autologous PBSC-transplantation in patients with previously untreated mantle cell or indolent B-cell-non-Hodgkin's lymphoma. Bone Marrow Transplant 2003; 31: 775–782.

    CAS  PubMed  Google Scholar 

  177. Coiffier B . Rituximab in combination with CHOP improves survival in elderly patients with aggressive non-Hodgkin's lymphoma. Semin Oncol 2002; 29 (2 Suppl. 6): 18–22.

    CAS  PubMed  Google Scholar 

  178. Ladetto M, Zallio F, Vallet S, Ricca I, Cuttica A, Caracciolo D et al. Concurrent administration of high-dose chemotherapy and rituximab is a feasible and effective chemo/immunotherapy for patients with high-risk non-Hodgkin's lymphoma. Leukemia 2001; 15: 1941–1949.

    CAS  PubMed  Google Scholar 

  179. Byrd JC, Peterson BL, Morrison VA, Park K, Jacobson R, Hoke E et al. Randomized phase 2 study of fludarabine with concurrent versus sequential treatment with Rituximab in symptomatic, untreated patients with B-cell chronic lymphocytic leukemia: results from Cancer and Leukemia Group B 9712 (CALGB 9712). Blood 2003; 101: 6–14.

    CAS  PubMed  Google Scholar 

  180. Stadtmauer EA . Gemtuzumab ozogamicin in the treatment of acute myeloid leukemia. Curr Oncol Rep 2002; 4: 375–380.

    PubMed  Google Scholar 

  181. Giles FJ . Gemtuzumab ozogamicin: promise and challenge in patients with acute myeloid leukemia. Expert Rev Anticancer Ther 2002; 2: 630–640.

    CAS  PubMed  Google Scholar 

  182. Cohen AD, Luger SM, Sickles C, Mangan PA, Porter DL, Schuster SJ et al. Gemtuzumab ozogamicin (Mylotarg) monotherapy for relapsed AML after hematopoietic stem cell transplant: efficacy and incidence of hepatic veno-occlusive disease. Bone Marrow Transplant 2002; 30: 23–28.

    CAS  PubMed  Google Scholar 

  183. Leopold LH, Berger MS, Feingold J . Acute and long-term toxicities associated with gemtuzumab ozogamicin (mylotarg) therapy of acute myeloid leukemia. Clin Lymphoma 2002; 2 (Suppl. 1): S29–S34.

    PubMed  Google Scholar 

  184. Alvarado Y, Tsimberidou A, Kantarjian H, Cortes J, Garcia-Manero G, Faderl S et al. Mylotarg combined with topotecan and cytarabine in patients with refractory acute myelogenous leukemia. Cancer Chemother Pharmacol 2002; 50: 497–500.

    Google Scholar 

  185. Voutsadakis IA . Gemtuzumab ozogamicin (CMA-676, Mylotarg) for the treatment of CD33+ acute myeloid leukemia. Anti-Cancer Drugs 2002; 13: 685–692.

    CAS  PubMed  Google Scholar 

  186. Estey E, Giles FJ . Pilot study of Mylotarg, idarubicin and cytarabine combination regimen in patients with primary resistant or relapsed acute myeloid leukemia. Cancer Chemother Pharmacol 2003; 51: 87–90.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gazitt, Y. Homing and mobilization of hematopoietic stem cells and hematopoietic cancer cells are mirror image processes, utilizing similar signaling pathways and occurring concurrently: circulating cancer cells constitute an ideal target for concurrent treatment with chemotherapy and antilineage-specific antibodies. Leukemia 18, 1–10 (2004). https://doi.org/10.1038/sj.leu.2403173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403173

Keywords

This article is cited by

Search

Quick links