Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Vascular endothelial growth factor and its receptors in multiple myeloma

Abstract

Multiple myeloma (MM) progresses from an avascular to a vascular phase (active MM) accompanied by a significant increase in microvessel density in the bone marrow. This article summarizes the literature concerning the specific role played by vascular endothelial growth factor (VEGF) in this process. Recent applications of antiangiogenic agents that interfere with VEGF signaling and block MM progression are also described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27–31.

    CAS  PubMed  Google Scholar 

  2. Risau W . Mechanisms of angiogenesis. Nature 1997; 386: 671–674.

    CAS  PubMed  Google Scholar 

  3. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–364.

    CAS  Google Scholar 

  4. Dvorak HF . Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 2002; 20: 4368–4380.

    CAS  PubMed  Google Scholar 

  5. Robinson CJ, Stringer SE . The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 2001; 114: 853–865.

    CAS  PubMed  Google Scholar 

  6. Poltorak Z, Cohen T, Sivan R et al. VEGF 145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem 1997; 272: 7151–7158.

    CAS  PubMed  Google Scholar 

  7. Plouet J, Moro F, Bertagnolli S, Coldeboeuf N, Mazarguil H, Clamens S et al. Extracellular cleavage of the vascular endothelial growth factor 189-amino acid form by urokinase is required for its mitogenic effect. J Biol Chem 1997; 272: 13390–13396.

    CAS  PubMed  Google Scholar 

  8. Li J, Perrella MA, Tsai JC, Yet SF, Hsieh CM, Yoshizumi M et al. Induction of vascular endothelial growth factor gene expression by interleukin-1 beta in rat aortic smooth muscle cells. J Biol Chem 1995; 270: 308–312.

    CAS  PubMed  Google Scholar 

  9. Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ . Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 1996; 271: 736–741.

    CAS  PubMed  Google Scholar 

  10. Matsumoto K, Ohi H, Kanmatsuse K . Interleukin 10 and interleukin 13 synergize to inhibit vascular permeability factor release by peripheral blood mononuclear cells from patients with lipoid nephrosis. Nephron 1997; 77: 212–218.

    CAS  PubMed  Google Scholar 

  11. Deroanne CF, Hajitou A, Calberg-Bacq CM, Nusgens BV, Lapiere CM . Angiogenesis by fibroblast growth factor 4 is mediated through an autocrine up-regulation of vascular endothelial growth factor expression. Cancer Res 1997; 57: 5590–5597.

    CAS  PubMed  Google Scholar 

  12. Finkenzeller G, Sparacio A, Technau A, Marme D, Siemeister G . Sp1 recognition sites in the proximal promoter of the human vascular endothelial growth factor gene are essential for platelet-derived growth factor-induced gene expression. Oncogene 1997; 15: 669–676.

    CAS  Google Scholar 

  13. Pertovaara L, Kaipainen A, Mustonen T, Orpana A, Ferrara N, Saksela O et al. Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J Biol Chem 1994; 269: 6271–6274.

    CAS  PubMed  Google Scholar 

  14. Goad DL, Rubin J, Wang H, Tashjian Jr AH, Patterson C . Enhanced expression of vascular endothelial growth factor in human SaOS-2 osteoblast-like cells and murine osteoblasts induced by insulin-like growth factor I. Endocrinology 1996; 137: 2262–2268.

    CAS  PubMed  Google Scholar 

  15. Ryuto M, Ono M, Izumi H, Yoshida S, Weich HA, Kohno K et al. Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J Biol Chem 1996; 271: 28220–28228.

    CAS  Google Scholar 

  16. Wang TH, Horng SG, Chang CL, Wu HM, Tsai YJ, Wang HS et al. Human chorionic gonadotropin-induced ovarian hyperstimulation syndrome is associated with up-regulation of vascular endothelial growth factor. J Clin Endocrinol Metab 2002; 87: 3300–3308.

    CAS  PubMed  Google Scholar 

  17. Dembinska-Kiec A, Dulak J, Partyka L, Krzesz R, Dudek D, Bartus S et al. Induction of nitric oxide synthase (NOS) and vascular endothelial growth factor (VEGF) in experimental model of angioplasty and heart ischemia. Adv Exp Med Biol 1997; 433: 163–167.

    CAS  PubMed  Google Scholar 

  18. Dembinska-Kiec A, Dulak J, Partyka L, Huk I, Mailnski T . VEGF-nitric oxide reciprocal regulation. Nat Med 1997; 3: 1177.

    CAS  PubMed  Google Scholar 

  19. Mukhopadhyay D, Tsiokas L, Sukhatme VP . Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res 1995; 55: 6161–6165.

    CAS  PubMed  Google Scholar 

  20. Mukhopadhyay D, Knebelmann B, Cohen HT, Ananth S, Sukhatme VP . The von Hippel–Lindau tumor suppressor gene product interacts with Sp1 to repress vascular endothelial growth factor promoter activity. Mol Cell Biol 1997; 17: 5629–5639.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Klagsbrun M, D'Amore PA . Vascular endothelial growth factor and its receptors. Cytokine Growth Factor Rev 1996; 7: 259–270.

    CAS  PubMed  Google Scholar 

  22. Larcher F, Murillas R, Bolontrade M, Conti CJ, Jorcano JL . VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene 1998; 17: 303–311.

    CAS  PubMed  Google Scholar 

  23. Olofsson B, Jeltsch M, Eriksson U, Alitalo K . Current biology of VEGF-B and VEGF-C. Curr Opin Biotechnol 1999; 10: 528–535.

    CAS  PubMed  Google Scholar 

  24. Hamada K, Oike Y, Takakura N, Ito Y, Jussila L, Dumont DJ et al. VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood 2000; 96: 3793–3800.

    CAS  PubMed  Google Scholar 

  25. Achen MG, Williams RA, Baldwin ME, Lai P, Roufail S, Alitalo K et al. The angiogenic and lymphangiogenic factor vascular endothelial growth factor-D exhibits a paracrine mode of action in cancer. Growth Factors 2002; 20: 99–107.

    CAS  PubMed  Google Scholar 

  26. Shibuya M, Ito N, Claesson-Welsh L . Structure and function of vascular endothelial growth factor receptor-1 and -2. Curr Top Microbiol Immunol 1999; 237: 59–83.

    CAS  PubMed  Google Scholar 

  27. Shore VH, Wang TH, Wang CL, Torry RJ, Caudle MR, Torry DS . Vascular endothelial growth factor, placenta growth factor and their receptors in isolated human trophoblast. Placenta 1997; 18: 657–665.

    CAS  PubMed  Google Scholar 

  28. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D . Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996; 87: 3336–3343.

    CAS  PubMed  Google Scholar 

  29. Sawano A, Iwai S, Sakurai Y, Ito M, Shitara K, Nakahata T et al. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte–macrophages in humans. Blood 2001; 97: 785–791.

    CAS  PubMed  Google Scholar 

  30. Thomas S, Vanuystel J, Gruden G, Rodriguez V, Burt D, Gnudi L et al. Vascular endothelial growth factor receptors in human mesangium in vitro and in glomerular disease. J Am Soc Nephrol 2000; 11: 1236–1243.

    CAS  PubMed  Google Scholar 

  31. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000; 95: 952–958.

    CAS  PubMed  Google Scholar 

  32. Gerber HP, Malik AK, Solar GP, Sherman D, Liang XH, Meng G et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002; 417: 954–958.

    CAS  PubMed  Google Scholar 

  33. Suzuma K, Takagi H, Otani A, Suzuma I, Honda Y . Increased expression of KDR/Flk-1 (VEGFR-2) in murine model of ischemia-induced retinal neovascularization. Microvasc Res 1998; 56: 183–191.

    CAS  PubMed  Google Scholar 

  34. Kukk E, Lymboussaki A, Taira S, Kaipainen A, Jeltsch M, Joukov V et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 1996; 122: 3829–3837.

    CAS  PubMed  Google Scholar 

  35. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M . Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998; 92: 735–745.

    CAS  PubMed  Google Scholar 

  36. Qi JH, Claesson-Welsh L . VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase. Exp Cell Res 2001; 263: 173–182.

    CAS  PubMed  Google Scholar 

  37. Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M . Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 1998; 95: 9349–9354.

    CAS  PubMed  Google Scholar 

  38. Gingras D, Lamy S, Beliveau R . Tyrosine phosphorylation of the vascular endothelial-growth-factor receptor-2 (VEGFR-2) is modulated by Rho proteins. Biochem J 2000; 348: 273–280.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH . Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 1994; 269: 26988–26995.

    CAS  PubMed  Google Scholar 

  40. Kroll J, Waltenberger J . The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J Biol Chem 1997; 272: 32521–32527.

    CAS  PubMed  Google Scholar 

  41. Fournier E, Blaikie P, Rosnet O, Margolis B, Birnbaum D, Borg JP . Role of tyrosine residues and protein interaction domains of SHC adaptor in VEGF receptor 3 signaling. Oncogene 1999; 18: 507–514.

    CAS  PubMed  Google Scholar 

  42. Zanetti A, Lampugnani MG, Balconi G, Breviario F, Corada M, Lanfrancone L et al. Vascular endothelial growth factor induces SHC association with vascular endothelial cadherin: a potential feedback mechanism to control vascular endothelial growth factor receptor-2 signaling. Arterioscler Thromb Vasc Biol 2002; 22: 617–622.

    CAS  PubMed  Google Scholar 

  43. Meyer RD, Dayanir V, Majnoun F, Rahimi N . The presence of a single tyrosine residue at the carboxyl domain of vascular endothelial growth factor receptor-2/FLK-1 regulates its autophosphorylation and activation of signaling molecules. J Biol Chem 2002; 277: 27081–27087.

    CAS  PubMed  Google Scholar 

  44. Rousseau S, Houle F, Landry J, Huot J . P38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 1997; 15: 2169–2177.

    CAS  PubMed  Google Scholar 

  45. Rousseau S, Houle F, Kotanides H, Witte L, Waltenberger J, Landry J et al. Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase-2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem 2000; 275: 10661–10672.

    CAS  PubMed  Google Scholar 

  46. Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 1994; 87: 503–508.

    CAS  PubMed  Google Scholar 

  47. Vacca A, Iurlaro M, Ribatti D, Minischetti M, Nico B, Ria R et al. Bone marrow neovascularization, plasma cell angiogenic potential and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 1999; 93: 3064–3073.

    CAS  PubMed  Google Scholar 

  48. Sezer O, Eucker J, Bauhuis C, Schweigert M, Luftner D, Kalus U et al. Bone marrow microvessel density is a prognostic factor for survival in patients with multiple myeloma. Ann Hematol 2000; 79: 574–577.

    CAS  PubMed  Google Scholar 

  49. Iwasaki T, Hamano T, Ogata A, Hashimoto N, Kitano M, Kakishita E . Clinical significance of vascular endothelial growth factor and hepatocyte growth factor in multiple myeloma. Br J Haematol 2002; 116: 796–802.

    CAS  PubMed  Google Scholar 

  50. Sezer O, Niemoller K, Jakob C, Zavrski I, Heider U, Eucker J et al. Relationship between bone marrow angiogenesis and plasma cell infiltration and serum beta2-microglobulin levels in patients with multiple myeloma. Ann Hematol 2001; 80: 598–601.

    CAS  PubMed  Google Scholar 

  51. Di Raimondo F, Azzaro MP, Palumbo G, Bagnato S, Giustolisi G, Floridia P et al. Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica 2000; 85: 800–805.

    CAS  PubMed  Google Scholar 

  52. Ribatti D, Vacca A, Nico B, Quondamatteo F, Ria R, Minischetti M et al. Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma. Br J Cancer 1999; 79: 451–455.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rawstron AC, Barrans SL, Blythe D, English A, Richards SJ, Fenton JA et al. In multiple myeloma, only a single stage of neoplastic plasma cell differentiation can be identified by VLA-5 and CD45 expression. Br J Haematol 2001; 113: 794–802.

    CAS  PubMed  Google Scholar 

  54. Ria R, Vacca A, Ribatti D, Di Raimondo F, Merchionne F, Dammacco F . αVβ3 integrin engagement enhances cell invasiveness in human multiple myeloma. Haematologica 2002; 87: 836–845.

    CAS  PubMed  Google Scholar 

  55. Bachelder RE, Crago A, Chung J, Wendt MA, Shaw LM, Robinson G et al. Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer Res 2001; 61: 5736–5740.

    CAS  PubMed  Google Scholar 

  56. Soker S, Kaefer M, Johnson M, Klagsbrun M, Atala A, Freeman MR . Vascular endothelial growth factor-mediated autocrine stimulation of prostate tumor cells coincides with progression to a malignant phenotype. Am J Pathol 2001; 159: 651–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Nicosia RF . What is the role of vascular endothelial growth factor-related molecules in tumor angiogenesis? Am J Pathol 1998; 153: 11–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 2000; 95: 2630–2636.

    CAS  PubMed  Google Scholar 

  59. Pulkki K, Pelliniemi TT, Kajamaki A, Tienhaara A, Laakso M, Lahtinen R . Soluble interleukin-6 receptor as a prognostic factor in multiple myeloma. Br J Haematol 1996; 92: 370–374.

    CAS  PubMed  Google Scholar 

  60. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z . Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13: 9–22.

    CAS  PubMed  Google Scholar 

  61. Nakagawa M, Kaneda T, Arakawa T, Morita S, Sato T, Yomada T et al. Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS Lett 2000; 473: 161–164.

    CAS  PubMed  Google Scholar 

  62. Bellamy WT, Richter L, Frutiger Y, Grogan TM . Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 1999; 59: 728–733.

    CAS  PubMed  Google Scholar 

  63. Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 2001; 98: 428–435.

    CAS  PubMed  Google Scholar 

  64. Podar K, Tai YT, Lin BK, Narsimhan RP, Sattler M, Kijima T et al. Vascular endothelial growth factor (VEGF)-induced migration of multiple myeloma cells is associated with β1-integrin and PI3-kinase-dependent PKCα activation. J Biol Chem 2002; 277: 7875–7881.

    CAS  PubMed  Google Scholar 

  65. Kumar S, Witzig TE, Thompson MA . Expression of angiogenic cytokines by plasma cells: a comparison of MGUS, smoldering myeloma and newly diagnosed symptomatic myeloma. Blood 2002; 100: 807a (abstract).

    Google Scholar 

  66. Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy MQ et al. Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 2000; 6: 3111–3116.

    CAS  PubMed  Google Scholar 

  67. Gupta D, Treon SP, Shima Y, Hideshima T, Podar K, Tai YT et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 2001; 15: 1950–1961.

    CAS  PubMed  Google Scholar 

  68. Vacca A, Ria R, Ribatti D, Semeraro F, Djonov V, Di Raimondo F et al. A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haematologica 2003; 88: 176–185.

    CAS  PubMed  Google Scholar 

  69. Jung YD, Mansfield PF, Akagi M, Takeda A, Liu W, Bucana CD et al. Effects of combination anti-vascular endothelial growth factor receptor and anti-epidermal growth factor receptor therapies on the growth of gastric cancer in a nude mouse model. Eur J Cancer 2002; 38: 1133–1140.

    CAS  PubMed  Google Scholar 

  70. Kim ES, Serur A, Huang J, Manley CA, McCrudden KW, Frischer JS et al. Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc Natl Acad Sci USA 2002; 99: 11399–11404.

    CAS  PubMed  Google Scholar 

  71. Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Chester R, Jackson JA et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 2002; 62: 4645–4655.

    CAS  PubMed  Google Scholar 

  72. Ke-Lin J, Qu-Hong A, Nagy JA, Eckelhoefer IA, Masse EM, Dvorak AM et al. Vascular targeting of solid ascites tumours with antibodies to vascular endothelial growth factor. Eur J Cancer 1996; 32A: 2467–2473.

    CAS  PubMed  Google Scholar 

  73. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS et al. Inhibition of vascular endothelial growth factor-induced angio-genesis suppresses tumor growth in vivo. Nature 1993; 362: 841–844.

    CAS  PubMed  Google Scholar 

  74. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A . Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994; 367: 576–579.

    CAS  PubMed  Google Scholar 

  75. Martiny-Baron G, Marme D . VEGF-mediated tumour angiogenesis: a new target for cancer therapy. Curr Opin Biotechnol 1995; 6: 675–680.

    CAS  PubMed  Google Scholar 

  76. Brekken RA, Overholser JP, Stastny VA, Waltenberger J, Minna JD, Thorpe PE . Selective inhibition of vascular endothelial growth factor (VEGF) receptor-2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res 2000; 60: 5117–5124.

    CAS  PubMed  Google Scholar 

  77. Presta LG, Chen H, O'Connor SJ, Chisholm V, Meng YG, Krummen L et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 1997; 57: 4593–5499.

    CAS  PubMed  Google Scholar 

  78. Bellamy WT, Richter L, Sirjani D, Roxas C, Glinsmann-Gibson B, Frutiger Y et al. Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 2001; 97: 1427–1434.

    CAS  PubMed  Google Scholar 

  79. Chen HX, Gore-Langton RE, Cheson BD . Clinical trials referral resource: current clinical trials of the anti-VEGF monoclonal antibody bevacizumab. Oncology 2001; 15: 1023–1026.

    Google Scholar 

  80. Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 2003; 21: 60–65.

    CAS  PubMed  Google Scholar 

  81. Sun L, Tran N, Liang C, Hubbard S, Tang F, Lipson K et al. Identification of substituted 3-[(4,5,6, 7-tetrahydro-1H-indol-2-yl)methylene]-1,3-dihydroindol-2-ones as growth factor receptor inhibitors for VEGF-R2 (Flk-1/KDR), FGF-R1, and PDGF-Rbeta tyrosine kinases. J Med Chem 2000; 43: 2655–2663.

    CAS  PubMed  Google Scholar 

  82. Hideshima T, Chauhan D, Shima Y, Raje N, Davies FE, Tai YT et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 2000; 96: 2943–2950.

    CAS  PubMed  Google Scholar 

  83. Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J et al. The proteasome inhibitor PS 341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001; 61: 3071–3076.

    CAS  PubMed  Google Scholar 

  84. Rousselot P, Labaume S, Marolleau JP, Larghero J, Noguera MH, Brouet JC et al. Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients. Cancer Res 1999; 59: 1041–1048.

    CAS  PubMed  Google Scholar 

  85. Park WH, Seol JG, Kim ES, Hyun JM, Jung CW, Lee CC et al. Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. Cancer Res 2000; 60: 3065–3071.

    CAS  PubMed  Google Scholar 

  86. Lin B, Podar K, Gupta D, Tai YT, Li S, Weller E et al. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res 2002; 62: 5019–5026.

    CAS  PubMed  Google Scholar 

  87. Mohler TM, Ho AD, Goldschmidt H, Barlogie B . Angiogenesis in hematologic malignancies. Crit Rev Oncol Hematol 2003; 45: 227–244.

    Google Scholar 

  88. Jain RK, Safabakhsh N, Sckell A, Chen Y, Jiang P, Benjamin L et al. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci USA 1998; 95: 10820–10825.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported in part by Associazione Italiana per la Ricerca sul Cancro (AIRC, Milan) and Ministry for Education, the Universities and Research (MIUR, ‘Molecular Engineering – C03’ funds, Interuniversity Funds for Basic Research (FIRB), Rome, Italy). RR is the recipient of a fellowship from the European Union ♯94/342/CE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Ribatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ria, R., Roccaro, A., Merchionne, F. et al. Vascular endothelial growth factor and its receptors in multiple myeloma. Leukemia 17, 1961–1966 (2003). https://doi.org/10.1038/sj.leu.2403076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403076

Keywords

This article is cited by

Search

Quick links