Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Molecular Targets For Therapy (MTT)
  • Published:

Molecular Targets for Therapy (MTT)

Differential effects of kinase cascade inhibitors on neoplastic and cytokine-mediated cell proliferation

Abstract

The Raf/MEK/ERK and PI3K/Akt pathways regulate proliferation and prevent apoptosis, and their altered expression is commonly observed in human cancer due to the high mutation frequency of upstream regulators. In this study, the effects of Raf, MEK, and PI3K inhibitors on conditionally transformed hematopoietic cells were examined to determine if they would display cytotoxic differences between cytokine- and oncogene-mediated proliferation, and whether inhibition of both pathways was a more effective means to induce apoptosis. In the hematopoietic model system employed, proliferation was conditional and occurred when either interleukin-3 (IL-3) or the estrogen receptor antagonist 4-hydroxytamoxifen (4HT), which activates the conditional oncoprotein (ΔRaf:ER), were provided. Thus, upon the addition of the signal transduction inhibitors and either IL-3 or 4HT, the effects of these drugs were examined in the same cell under ‘cytokine-’ and ‘oncoprotein’ -mediated growth conditions avoiding genetic and differentiation stage heterogeneity. At drug concentrations around the reported IC50 for the Raf inhibitor L-779,450, it suppressed DNA synthesis and induced apoptosis in hematopoietic FDC-P1 cells transformed to grow in response to either Raf-1 or A-Raf (FD/ΔRaf-1:ER and FD/ΔA-Raf:ER), but it displayed less effects on DNA synthesis and apoptosis when the cells were cultured in IL-3. This Raf inhibitor was less effective on B-Raf- or MEK1-responsive cells, demonstrating the specificity of this drug. MEK inhibitors also suppressed DNA synthesis and induced apoptosis in Raf-responsive cells and the effects were more significant on Raf-responsive compared to cytokine-mediated growth. The PI3K inhibitor LY294002 suppressed Raf-mediated growth, indicating that part of the long-term proliferative effects mediated by Raf are PI3K dependent. Simultaneous inhibition of both Raf/MEK/ERK and PI3K/Akt pathways proved a more efficient means to suppress DNA synthesis and induce apoptosis at lower drug concentrations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 13
Figure 16
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 14
Figure 19
Figure 15
Figure 17
Figure 18

References

  1. Lee Jr JT, McCubrey JA . The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leukemia 2002; 16: 486–507.

    Article  CAS  PubMed  Google Scholar 

  2. Weinstein-Oppenheimer CR, Blalock WL, Steelman LS, Chang F, McCubrey JA . Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-dependent tumors. Pharmacol Ther 2000; 88: 229–279.

    Article  CAS  PubMed  Google Scholar 

  3. Weinstein-Oppenheimer CR, Henríquez-Roldán CF, Davis J, Navolanic PM, Saleh OA, Steelman LS et al. Role of the Raf signal transduction cascade in the in vitro resistance to the anticancer drug doxorubicin. Clin Cancer Res 2001; 7: 2892–2907.

    Google Scholar 

  4. Chang F, Lee JT, Navolanic PM, Steelman JG, Blalock WL, Franklin RA et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 2003; 17: 590–604.

    Article  CAS  PubMed  Google Scholar 

  5. Lee Jr JT, McCubrey JA . Targeting the Raf kinase cascade in cancer therapy – novel molecular targets and therapeutic strategies. Expert Opin Ther Targets 2002; 6: 659–678.

    Article  CAS  PubMed  Google Scholar 

  6. Krystal GW . Mechanisms of resistance to imatinib (STI571) and prospects for combination with conventional chemotherapeutic agents. Drug Resist Updates. 2001; 4: 16–21.

    Article  CAS  Google Scholar 

  7. Blalock WL, Weinstein-Oppenheimer C, Chang F, Hoyle PE, Wang XY, Algate PA et al. Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs. Leukemia 1999; 13: 1109–1166.

    Article  CAS  PubMed  Google Scholar 

  8. McCubrey JA, May WS, Duronio V, Mufson A . Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 2000; 14: 9–21.

    Article  CAS  PubMed  Google Scholar 

  9. Heimbrook DC, Huber HE, Stirdivant SM, Claremon D, Liverton N, Patrick DR et al. Identification of potent, selective kinase inhibitors of Raf. Proc Am Assoc Cancer Res 1998; 39: 558.

    Google Scholar 

  10. Hall-Jackson C, Eyers P, Cohen P, Goedert M, Boyle F, Hewitt N et al. Paradoxical activation of Raf by a novel Raf inhibitor. Chem Biol 1999; 8: 559–568.

    Article  Google Scholar 

  11. Cohen P . The development and therapeutic potential of protein kinase inhibitors. Curr Opin Chem Biol 1999; 4: 459–465.

    Article  Google Scholar 

  12. Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 2003; 17: 1263–1294.

    Article  CAS  PubMed  Google Scholar 

  13. Lyons JF, Wilhelm S, Hibner B, Bollag G . Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 2001; 8: 219–225.

    Article  CAS  PubMed  Google Scholar 

  14. Dudley DT, Pung L, Decker SJ, Bridges AJ, Saltiel AR . A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 1995; 92: 7686–7689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Duncia JV, Santella III JB, Higley CA, Pitts WJ, Wityak J, Frietze WE et al. MEK inhibitors: the chemistry and biological activity of U0126, its analogs, and cyclization products. Bioorg Med Chem Lett 1998; 8: 2839–2844.

    Article  CAS  PubMed  Google Scholar 

  16. Vlahos CJ, Matter WF, Hui KY, Brown RF . A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 1994; 269: 5241–5248.

    CAS  PubMed  Google Scholar 

  17. Blagosklonny MV, Fojo T, Bhalla KN, Kim JS, Trepel JB, Figg WD et al. The Hsp90 inhibitor geldanamycin selectively sensitizes Bcr-Abl-expressing leukemia cells to cytotoxic chemotherapy. Leukemia 2001; 15: 1537–1543.

    Article  CAS  PubMed  Google Scholar 

  18. Dexter TM, Garland J, Scott D, Scolnick E, Metcalf D . Growth factor-dependent hematopoietic precursor cell lines. J Exp Med 1980; 152: 1036–1047.

    Article  CAS  PubMed  Google Scholar 

  19. Blalock WL, Navolanic PM, Steelman LS, Shelton JG, Moye PW, Lee JT et al. Requirement for the PI3K/Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia. Leukemia. 2003; 17: 1058–1067.

    Article  CAS  PubMed  Google Scholar 

  20. White MK, McCubrey JA . Suppression of apoptosis: role in cell growth and neoplasia. Leukemia 2001; 15: 1011–1021.

    Article  CAS  PubMed  Google Scholar 

  21. McCubrey JA, Blalock WL, Saleh O, Pearce M, Burrows C, Steelman LS et al. Enhanced ability of daniplestim and myelopoietin-1 to suppress apoptosis in human hematopoietic cells. Leukemia 2001; 15: 1203–1216.

    Article  CAS  PubMed  Google Scholar 

  22. Srinivasa SP, Doshi PD . Extracellular signal-related kinase and p38 mitogen-activated protein kinase pathways cooperate in mediating cytokine-induced proliferation of a leukemic cell line. Leukemia 2002; 16: 244–253.

    Article  CAS  PubMed  Google Scholar 

  23. Hoyle PE, Moye PW, Steelman LS, Blalock WL, Franklin RA, Pearce M et al. Differential abilities of the Raf family of protein kinases to abrogate cytokine-dependency and prevent apoptosis in murine hematopoietic cells by a MEK1-dependent mechanism. Leukemia 2000; 14: 642–656.

    Article  CAS  PubMed  Google Scholar 

  24. Blalock WL, Pearce M, Steelman LS, Franklin RA, McCarthy SA, Cherwinski H et al. A conditionally-active form of MEK1 results in autocrine transformation of human and mouse hematopoietic cells. Oncogene 2000; 19: 526–536.

    Article  CAS  PubMed  Google Scholar 

  25. Blalock WL, Moye PW, Chang F, Pearce M, Steelman LS, McMahon M et al. Combined effects of aberrant MEK1 activity and BCL2 overexpression on relieving the cytokine-dependency of human and murine hematopoietic cells. Leukemia 2000; 14: 1080–1096.

    Article  CAS  PubMed  Google Scholar 

  26. Blalock WL, Pearce M, Chang F, Lee J, Pohnert S, Burrows C et al. McMahon M, McCubrey J. Effects of inducible MEK1 activation on the cytokine-dependency of lymphoid cells. Leukemia 2001; 15: 794–807.

    Article  CAS  PubMed  Google Scholar 

  27. Weinstein-Oppenheimer C, Steelman LS, Algate PA, Blalock WL, Burrows C, Hoyle PE et al. Effects of deregulated Raf activation on integrin, cytokine-receptor expression and the induction of apoptosis in hematopoietic cells. Leukemia 2000; 14: 1921–1938.

    Article  CAS  PubMed  Google Scholar 

  28. Wang XY, McCubrey JA . Differential effects of retroviral long terminal repeats on interleukin-3 gene expression and autocrine transformation. Leukemia 1997; 11: 1711–1725.

    Article  CAS  PubMed  Google Scholar 

  29. Wang XY, Hoyle PE, McCubrey JA . Characterization of proteins binding the 3′ regulatory region of the IL-3 gene in IL-3-dependent and autocrine-transformed hematopoietic cells. Leukemia 1998; 12: 520–531.

    Article  CAS  PubMed  Google Scholar 

  30. McCubrey JA, Steelman LS, Hoyle PE, Blalock WL, Weinstein-Oppenheimer C, Franklin RA et al. Differential abilities of activated Raf oncoproteins to abrogate cytokine-dependency, prevent apoptosis and induce autocrine growth factor synthesis in human hematopoietic cells. Leukemia 1998; 12: 1903–1929.

    Article  CAS  PubMed  Google Scholar 

  31. Moye PW, Blalock WL, Hoyle PE, Chang F, Franklin RA, Weinstein-Oppenheimer C et al. Synergy between Raf and BCL2 in abrogating the cytokine-dependency of hematopoietic cells. Leukemia 2000; 14: 1060–1079.

    Article  CAS  PubMed  Google Scholar 

  32. Franklin RA, McCubrey JA . Kinases: positive and negative regulators of apoptosis. Leukemia 2000; 14: 2019–2034.

    Article  CAS  PubMed  Google Scholar 

  33. McCubrey JA, Lee JT, Steelman LS, Blalock WL, Moye PW, Chang F et al. Interactions between the PI3K and Raf signaling pathways can result in the transformation of hematopoietic cells. Cancer Detect Prevent 2001; 25: 375–393.

    CAS  PubMed  Google Scholar 

  34. Chang F, Steelman LS, McCubrey JA . Raf-induced cell cycle progression in human TF-1 hematopoietic cells. Cell Cycle 2002; 1: 220–226.

    Article  CAS  PubMed  Google Scholar 

  35. Ihle JN, Nosaka T, Thierfelder W, Quelle FW, Shimoda K . Jaks and Stats in cytokine signaling. Stem Cells 1997; 15: 105–111.

    Article  CAS  PubMed  Google Scholar 

  36. Steelman LS, Algate PA, Blalock WL, Wang XY, Prevost KD, Hoyle PE et al. Oncogenic effects of overexpression of the interleukin-3 receptor on hematopoietic cells. Leukemia 1996; 10: 528–542.

    CAS  PubMed  Google Scholar 

  37. Chang F, McCubrey JA . p21Cip1 induced by Raf is associated with increased Cdk4 activity in hematopoietic cells. Oncogene 2001; 20: 4353–4364.

    Article  Google Scholar 

  38. Frankel AE, McCubrey JA, Miller MS, Delatte S, Ramage J, Kiser M et al. Diptheria toxin fused to human interleukin-3 is toxic to blasts from patients with myeloid leukemias. Leukemia 2000; 14: 576–585.

    Article  CAS  PubMed  Google Scholar 

  39. Kiser M, McCubrey JA, Steelman LS, Shelton JG, Miller MS, Ramage J et al. Oncogene-dependent engraftment of human myeloid leukemia cells in immunosuppressed mice. Leukemia 2001; 15: 814–818.

    Article  CAS  PubMed  Google Scholar 

  40. Pritchard CA, Samuels ML, Bosch E, McMahon M . Conditionally oncogenic forms of the A-raf and B-raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol Cell Biol 1995; 15: 9430–9442.

    Article  Google Scholar 

  41. Bosch E, Cherwinski H, Peterson D, McMahon M . Mutations of critical amino acids affect the biological and biochemical properties of oncogenic A-Raf and Raf-1. Oncogene 1997; 11: 1021–1034.

    Article  Google Scholar 

  42. Samuels ML, Weber MJ, Bishop JM, McMahon M . Conditional transformation of cells and rapid activation of the mitogen-activated protein kinase cascade by an estradiol-dependent human raf-1 protein kinase. Mol Cell Biol 1993; 13: 6241–6252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rommel C, Clarke BA, Zimmermann S, Nunez L, Rossman R, Reid K et al. Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 1999; 286: 1738–1741.

    Article  CAS  PubMed  Google Scholar 

  44. Zimmermann S, Moelling K . Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 1999; 286: 1741–1744.

    Article  CAS  PubMed  Google Scholar 

  45. Guan K, Figueroa C, Brtva TR, Zhu T, Taylor J, Barber TD et al. Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem 2000; 275: 27354–27359.

    CAS  PubMed  Google Scholar 

  46. Zhang BH, Tang E, Zhu T, Greenberg M, Vojtek A, Guan KL . Serum and glucocorticoid-inducible kinase SGK phosphorylates and negatively regulates B-Raf. J Biol Chem 276: 31620–31626.

    Article  CAS  PubMed  Google Scholar 

  47. Majewski M, Nieborowska-Skorska M, Salomoni P, Slupianek A, Reiss K, Trotta R et al. Activation of mitochondrial Raf-1 is involved in the anti-apoptotic effects of Akt. Cancer Res 1999; 59: 2815–2819.

    CAS  PubMed  Google Scholar 

  48. Gelfanov VM, Burgess GS, Litz-Jackson S, King AJ, Marshall MS, Nakshatri H et al. Transformation of interleukin-3-dependent cells without participation of Stat5/bcl-xL:cooperation of akt with raf/erk leads to p65 nuclear factor κB-mediated antiapoptosis involving c-IAP2. Blood 2001; 15: 2508–2517.

    Article  Google Scholar 

  49. von Gise A, Lorenz P, Wellbrock C, Hemmings B, Berberich-Siebelt F, Rapp UR et al. Apoptosis suppression by Raf-1 and MEK1 requires MEK and phosphatidylinositol 3-kinase dependent signals. Mol Cell Biol 2001; 21: 2324–2336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Janssen RA, Veenstra KG, Jonasch P, Jonasch E, Mier JW . Ras- and Raf-induced down-modulation of non-muscle tropomyosin are MEK-independent. J Biol Chem 1998; 273: 32182–32186.

    Article  CAS  PubMed  Google Scholar 

  51. Jette C, Thorburn A . A Raf-induced, MEK-independent signaling pathway regulates atrial natriuretic factor gene expression in cardiac muscle cells. FEBS Lett 2000; 467: 1–6.

    Article  CAS  PubMed  Google Scholar 

  52. Hall-Jackson C, Goedert M, Hedge P, Cohen P . Effect of SB 203580 on the activity of c-Raf in vitro and in vivo. Oncogene 1999; 18: 2047–2054.

    Article  CAS  PubMed  Google Scholar 

  53. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  PubMed  Google Scholar 

  54. Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R et al. Braf and Ras mutations in human lung cancer and melanoma. Cancer Res 2002; 62: 6997–7000.

    CAS  PubMed  Google Scholar 

  55. Eychene A, Dusanter-Fourt I, Barnier JV, Papin C, Charon M, Gisselbrecht S et al. Expression and activation of B-Raf kinase isoforms in human and murine leukemia cell lines. Oncogene 1995; 10: 1159–1165.

    CAS  PubMed  Google Scholar 

  56. Brummer T, Shaw PE, Reth M, Misawa Y . Inducible gene deletion reveals different roles for B-Raf and Raf-1 in B-cell antigen receptor signalling. EMBO J 2002; 21: 5611–5622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ . Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 1997; 272: 4378–4383.

    Article  CAS  PubMed  Google Scholar 

  58. Erhardt P, Troppmair J, Rapp UR, Cooper GM . Differential regulation of Raf-1 and B-Raf and Ras-dependent activation of mitogen-activated protein kinase by cyclin AMP in PC12 cells. Mol Cell Biol 1995; 15: 5524–5530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Erhardt P, Schremser EJ, Cooper GM . B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway. Mol Cell Biol 1999; 19: 5308–5315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lyons JF, Wilhelm S, Hibner B, Bollag G . Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 2001; 8: 219–225.

    Article  CAS  PubMed  Google Scholar 

  61. Hotte SJ, Hirte HW . Early clinical data in patients with advanced solid malignancies. Curr Pharm Des 2002; 8: 2249–2253.

    Article  CAS  PubMed  Google Scholar 

  62. Lowinger TB, Riedl B, Dumas J, Smith RA . Design and discover of small molecules targeting raf-1 kinase. Curr Pharm Des 2002; 8: 2269–2278.

    Article  CAS  PubMed  Google Scholar 

  63. Monica BP, Johnston JF, Geiger T, Muller M, Fabbro D . Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against c-Raf kinase. Nat Med 1996; 2: 668–675.

    Article  Google Scholar 

  64. Tolcher AW, Reyno L, Venner PM, Ernst SD, Moore M, Geary RS et al. A randomized phase II and pharmocokinetic study of the antisense oligonucleotides ISIS 3521 and ISIS 5132 in patients with hormone-refractory prostate cancer. Clin Cancer Res 2002; 8: 2530–2535.

    CAS  PubMed  Google Scholar 

  65. Holmlund JT, Monia BP, Kwoh TJ, Dorr FA . Toward antisense oligonucleotide therapy for cancer: ISIS compounds in clinical development. Curr Opin Mol Ther 1999; 1: 372–385.

    CAS  PubMed  Google Scholar 

  66. Wang H, Prasad G, Buolamwini JK, Zhang R . Antisense anticancer oligonucleotide therapeutics. Curr Cancer Drug Targets 2001; 1: 177–196.

    Article  PubMed  Google Scholar 

  67. Kimoto M, Shirouzu M, Mizutani S, Koide H, Kaziro Y, Hirao I et al. Anti-(Raf-1) RNA aptamers that inhibit Ras-induced Raf-1 activation. Eur J Biochem 2002; 269: 697–704.

    Article  CAS  PubMed  Google Scholar 

  68. Baumann B, Weber CK, Troppmair J, Whiteside S, Israel A, Rapp UR et al. Raf induces NF-κB by membrane shuttle kinase MEKK1, a signaling pathway critical for transformation. Proc Natl Acad Sci USA 2000; 97: 4615–4620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms Catherine Spruill for the outstanding artwork. This work was supported in part by a grant form the United States National Institutes of Health (National Cancer Institute, CA51025). We appreciate the comments on this manuscript provided by Dr Fred Bertrand. We thank Merck for generously providing L-779,450.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shelton, J., Moye, P., Steelman, L. et al. Differential effects of kinase cascade inhibitors on neoplastic and cytokine-mediated cell proliferation. Leukemia 17, 1765–1782 (2003). https://doi.org/10.1038/sj.leu.2403052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403052

Keywords

This article is cited by

Search

Quick links