Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Telomere dynamics in childhood leukemia and solid tumors: a follow-up study

Abstract

Telomeres of hematopoietic cells shorten with age, possibly contributing to the aging-associated hematopoietic pathology (immunosenescence, malignant transformation). Accelerated telomere shortening is seen with replicative stress, such as during administration of serial chemotherapy cycles for the treatment of childhood cancer. To define the long-term consequences of pediatric cancer treatment on hematopoietic cell telomere length, we undertook a prospective 4-year follow-up study of a 61-patient cohort of pediatric malignancies in a community-based setting. We found that mononuclear cells (MNC) and granulocytes of children with standard-risk acute lymphoblastic leukemia (ALL) suffered minimal telomere shortening throughout therapy (less than 1 kbp; average follow-up, 20 months), while those of children with solid tumors showed greater and more heterogenous telomere attrition (0.5–2.8 kbp, average follow-up, 9 months). In addition, we evaluated the role of telomerase, the enzyme commonly up-regulated in pediatric leukemic and solid tumor cells for telomere length maintenance, as a disease marker. Serial determinations of telomerase in MNC were useful to confirm disease remission in leukemia, but play no role in the follow-up of children with solid tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Blackburn EH . Structure and function of telomeres. Nature 1991; 350: 569–573.

    Article  CAS  Google Scholar 

  2. Blackburn EH . Switching and signaling at the telomere. Cell 2001; 106: 661–673.

    Article  CAS  PubMed  Google Scholar 

  3. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H & de Lange T . Mammalian telomeres end in a large duplex loop. Cell 1999; 97: 503–514.

    Article  CAS  PubMed  Google Scholar 

  4. Allsopp RC & Harley CB . Evidence for a critical telomere length in senescent human fibroblasts. Exp Cell Res 1995; 219: 130–136.

    Article  CAS  PubMed  Google Scholar 

  5. Shay JW & Wright WE . Hayflick, his limit and cellular aging. Nat Rev Mol Cell Biol 2000; 1: 72–76.

    Article  CAS  PubMed  Google Scholar 

  6. Maser RS & DePinho RA . Connecting chromosomes, crisis and cancer. Science 2002; 26: 565–569.

    Article  Google Scholar 

  7. Greider CW & Blackburn EH . Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985; 43: 405–413.

    Article  CAS  Google Scholar 

  8. Blackburn EH . The end of the (DNA) line. Nat Struct Biol 2000; 7: 847–850.

    Article  CAS  PubMed  Google Scholar 

  9. Weng N . Interplay between telomere length and telomerase in human leukocyte differentiation and aging. J Leuk Biol 2001; 70: 861–867.

    CAS  Google Scholar 

  10. Engelhardt M, Kumar R, Albanell J, Pettengell R, Han W & Moore MA . Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood 1997; 90: 182–193.

    CAS  PubMed  Google Scholar 

  11. Weng NP, Hathcock KS & Hodes RJ . Regulation of telomere length and telomerase in T and B cells: a mechanism for maintaining replicative potential. Immunity 1998; 9: 151–157.

    Article  CAS  Google Scholar 

  12. Hodes RJ & Weng N . Lineage-specific telomere shortening and unaltered capacity for telomerase expression in human T and B lymphocytes with age. J Immunol 2000; 165: 1191–1196.

    Article  PubMed  Google Scholar 

  13. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB & Lansdorp PM . Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 1994; 91: 9857–9860.

    Article  CAS  PubMed  Google Scholar 

  14. Vaziri H, Schechter F, Uchida I, Wei L, Zhu X, Effros R, Cohen D & Harley CB . Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet 1993; 52: 661–667.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Friedrich U, Schwab M, Griese E-U, Fritz P & Klotz U . Telomeres in neonates: new insights in fetal hematopoiesis. Ped Res 2001; 49: 252–255.

    Article  CAS  Google Scholar 

  16. Rufer N, Brummendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M & Lansdorp PM . Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 1999; 190: 157–167.

    Article  CAS  PubMed  Google Scholar 

  17. Zeichner SL, Palumbo P, Feng Y, Xiao X, Gee D, Sleasman J, Goodenow M, Biggar R & Dimitrov D . Rapid telomere shortening in children. Blood 1999; 93: 2824–2830.

    CAS  PubMed  Google Scholar 

  18. Frenck RW, Blackburn EH & Shannon KM . The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci USA 1998; 95: 5607–5610.

    Article  CAS  PubMed  Google Scholar 

  19. Vulliami T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ & Dokal I . The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 2001; 413: 432–435.

    Article  Google Scholar 

  20. Vulliamy T, Marrone A, Dokal I & Mason PJ . Association between aplastic anemia and mutations in telomerase RNA. Lancet 2002; 359: 2168–2170.

    Article  CAS  PubMed  Google Scholar 

  21. Callen E, Samper E, Ramirez MJ, Creus A, Marcos R, Ortega JJ, Olive T, Badell I, Blasco MA & Surralles J . Breaks at telomeres and TRF2-independent end-fusions in in Fanconi anemia. Hum Mol Genet 2002; 11: 439–444.

    Article  CAS  PubMed  Google Scholar 

  22. Pandita TK . ATM function and telomere stability. Oncogene 2002; 21: 611–618.

    Article  CAS  PubMed  Google Scholar 

  23. Wynn RF, Cross MA, Hatton C, Will AM, Lashford LS, Dexter TM & Testa NG . Accelerated telomere shortening in young recipients of allogeneic bone-marrow transplants. Lancet 1998; 351: 178–181.

    Article  CAS  PubMed  Google Scholar 

  24. Akiyama M, Hoshi Y, Sakurai S, Yamada H, Yamada O & Mizoguchi H . Changes of telomere length in children after hematopoietic stem cell transplantation. Bone Marrow Transplant 1998; 21: 167–171.

    Article  CAS  PubMed  Google Scholar 

  25. Notaro R, Cimmino A, Tabarini D, Rotoli B & Luzzatto L . In vivo telomere dynamics of human hematopoietic stem cells. Proc Natl Acad Sci USA 1997; 94: 13782–13785.

    Article  CAS  PubMed  Google Scholar 

  26. Rufer N, Brummendorf TH, Chapuis B, Helg C, Lansdorp PM & Roosnek E . Accelerated telomere shortening in hematological lineages is limited to the first year following stem cell transplantation. Blood 2001; 97: 575–577.

    Article  CAS  PubMed  Google Scholar 

  27. Thornley I, Sutherland R, Wynn R, Nayar R, Sung L, Corpus G, Kiss T, Lipton J, Doyle J, Saunders F, Kamel-Reid S, Freedman M & Messner H . Early hematopoietic reconstitution after clinical stem cell transplantation: evidence for stochastic stem cell behaviour and limited acceleration in telomere loss. Blood 2002; 99: 2387–2396.

    Article  CAS  PubMed  Google Scholar 

  28. Mathioudakis G, Storb R, McSweeney PA, Torok-Storb B, Lansdorp PM, Brmmendorf TH, Gass MJ, Bryant EM, Storek J, Flowers MED, Gooley T & Nash RA . Polyclonal hematopoiesis with variable telomere shortening in human long-term allogeneic marrow graft recipients. Blood 2000; 96: 3991–3994.

    CAS  PubMed  Google Scholar 

  29. Robertson JD, Testa NG, Russell NH, Jackson G, Parker AN, Milligan DW, Stainer C, Chakrabarti S, Dougal M & Chopra R . Accelerated telomere shortening following allogeneic transplantation is independent of the cell source and occurs within the first year post transplant. Bone Marrow Transplant 2001; 27: 1283–1286.

    Article  CAS  PubMed  Google Scholar 

  30. De Pauw ES, Otto SA, Wijnen JT, Vossen JM, van Weel MH, Tanke HJ, Miedema F, Willemze R, Roelofs H & Fibbe WE . Long-term follow-up of recipients of allogeneic bone marrow grafts reveals no progressive telomere shortening and provides no evidence for hematopoietic stem cell exhaustion. Br J Haematol 2002; 116: 491–496.

    Article  PubMed  Google Scholar 

  31. Engelhardt M, Ozkaynak MF, Drullinsky P, Sandoval C, Tugal O, Jayabose S & Moore MA . Telomerase activity and telomere length in pediatric patients with malignancies undergoing chemotherapy. Leukemia 1998; 12: 13–24.

    Article  CAS  PubMed  Google Scholar 

  32. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL & Shay JW . Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–2015.

    Article  CAS  Google Scholar 

  33. Broccoli D, Young JW & de Lange T . Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci USA 1995; 92: 9082–9086.

    Article  CAS  PubMed  Google Scholar 

  34. Ohyashiki JH, Sashida G, Tauchi T & Ohyashiki K . Telomeres and telomerase in hematological neoplasia. Oncogene 2002; 21: 680–687.

    Article  CAS  PubMed  Google Scholar 

  35. Malaska J, Sklenickova M, Krejci K, Fajkusova L, Bajer M, Hrstkova H & Fajkus J . Telomerase activity and expression and telomere analysis in situ in the course of treatment of childhood leukemias. Blood Cells Mol Dis 2000; 26: 534–539.

    Article  CAS  PubMed  Google Scholar 

  36. Li B, Yang J, Andrews C, Chen YX, Toofanfard P, Huang RW, Horvath E, Chopra H, Raza A & Preisler HD . Telomerase activity in preleukemia and acute myelogenous leukemia. Leuk Lymphoma 2000; 36: 579–587.

    Article  PubMed  Google Scholar 

  37. Preisler HD, Li B, Yang BL, Huang RW, Devemy E, Venugopal P, Tao M, Chopra H, Gregory SA, Adler S, Sivaraman S, Toofanfard P, Jajeh A, Galvez A & Robin E . Suppression of telomerase activity and cytokine messenger RNA levels in acute myelogenous leukemia cells in vivo in patients by amifostine and interleukin 4. Clin Cancer Res 2000; 6: 807–812.

    CAS  PubMed  Google Scholar 

  38. Ohyashiki JH, Ohyashiki K, Iwama H, Hayashi S, Toyama K & Shay JW . Clinical implications of telomerase activity levels in acute leukemia. Clin Cancer Res 1997; 3: 619–625.

    CAS  PubMed  Google Scholar 

  39. Margolin JF & Poplack DG . Acute lymphoblastic leukemia. In: Pizzo PA, Poplack DG (eds)Principles and Practice of Pediatric Oncology, 3rd edn. Lippincott-Raven: Philadelphia, 1997, pp 409–462.

    Google Scholar 

  40. Wright WE, Shay JW & Piatyszek MA . Modifications of a telomeric repeat amplification protocol (TRAP) result in increased reliability, linearity and sensitivity. Nucleic Acids Res 1995; 23: 3794–3795.

    Article  CAS  PubMed  Google Scholar 

  41. Xu D, Gruber A, Peterson C & Pisa P . Telomerase activity and the expression of telomerase components in acute myelogenous leukaemia. Br J Haematol 1998; 102: 1367–1375.

    Article  CAS  PubMed  Google Scholar 

  42. Poremba C, Scheel C, Hero B, Christiansen H, Schaefer KL, Nakayama J, Berthold F, Juergens H, Boecker W & Dockhorn-Dworniczak B . Telomerase activity and telomerase subunits gene expression patterns in neuroblastoma: a molecular and immunohistochemical study establishing prognostic tools for fresh-frozen and paraffin-embedded tissues. J Clin Oncol 2000; 18: 2582–2592.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang W, Piatyszek MA, Kobayashi T, Estey E, Andreeff M, Deisseroth AB, Wright WE & Shay JW . Telomerase activity in human acute myelogenous leukemia: inhibition of telomerase activity by differentiation-inducing agents. Clin Cancer Res 1996; 2: 799–803.

    CAS  PubMed  Google Scholar 

  44. Norrback KF, Enblad G, Erlanson M, Sundstrom C & Roos G . Telomerase activity in Hodgkin’s disease. Blood 1998; 92: 567–573.

    CAS  PubMed  Google Scholar 

  45. Remes K, Norrback KF, Rosenquist R, Mehle C, Lindh J & Roos G . Telomere length and telomerase activity in malignant lymphomas at diagnosis and relapse. Br J Cancer 2000; 82: 601–607.

    Article  CAS  PubMed  Google Scholar 

  46. Dome JS, Chung S, Bergemann T, Umbricht CB, Saji M, Carey LA, Grundy PE, Perlman EJ, Breslow NE & Sukumar S . High telomerase reverse transcriptase (hTERT) messenger RNA level correlates with tumor recurrence in patients with favorable histology Wilms’ tumor. Cancer Res 1999; 59: 4301–4307.

    CAS  PubMed  Google Scholar 

  47. Hiraga S, Ohnishi T, Izumoto S, Miyahara E, Kanemura Y, Matsumura H & Arita N . Telomerase activity and alterations in telomere length in human brain tumors. Cancer Res 1998; 58: 2117–2125.

    CAS  PubMed  Google Scholar 

  48. Yan P, Coindre JM, Benhattar J, Bosman FT & Guillou L . Telomerase activity and human telomerase reverse transcriptase mRNA expression in soft tissue tumors: correlation with grade, histology, and proliferative activity. Cancer Res 1999; 59: 3166–3170.

    CAS  PubMed  Google Scholar 

  49. Aogi K, Woodman A, Urquidi V, Mangham DC, Tarin D & Goodison S . Telomerase activity in soft-tissue and bone sarcomas. Clin Cancer Res 2000; 6: 4776–4781.

    CAS  PubMed  Google Scholar 

  50. Adamson DJ, King DJ & Haites NE . Significant telomere shortening in childhood leukemia. Cancer Genet Cytogenet 1992; 61: 204–206.

    Article  CAS  PubMed  Google Scholar 

  51. Neglia JP, Meadows AT, Robison LL, Kim TH, Newton WA, Ruymann FB, Sather HN & Hammond GD . Second neoplasms after acute lymphoblastic leukemia in childhood. N Engl J Med 1991; 325: 1330–1336.

    Article  CAS  PubMed  Google Scholar 

  52. Neglia JP, Friedman DL, Yasui Y, Mertens AC, Hammond S, Stovall M, Donaldson SS, Meadows AT & Robison LL . Second malignant neoplasms in five-year survivors of childhood cancer: childhood cancer survivor study. J Natl Cancer Inst 2001; 93: 618–629.

    Article  CAS  PubMed  Google Scholar 

  53. Kushner BH, Heller G, Cheung NK, Wollner N, Kramer K, Bajorin D, Polyak T & Meyers PA . High risk of leukemia after short-term dose-intensive chemotherapy in young patients with solid tumors. J Clin Oncol 1998; 16: 3016–3020.

    Article  CAS  PubMed  Google Scholar 

  54. Kushner BH, Cheung NK, Kramer K, Heller G & Jhanwar SC . Neuroblastoma and treatment-related myelodysplasia/leukemia: the Memorial Sloan-Kettering experience and a literature review. J Clin Oncol 1998; 16: 3880–3889.

    Article  CAS  PubMed  Google Scholar 

  55. Ishibashi T & Lippard SJ . Telomere loss in cells treated with cisplatin. Proc Natl Acad Sci USA 1998; 95: 4219–4223.

    Article  CAS  PubMed  Google Scholar 

  56. Moore MA . Cytokine and chemokine networks influencing stem cell proliferation, differentiation and marrow homing. J Cell Biochem 2002; 38 (Suppl.): 29–38.

    Article  Google Scholar 

  57. Schroder CP, Wisman GB, de Jong S, van der Graaf WT, Ruiters MH, Mulder NH, de Leij LF, van der Zee AG & de Vries EG . Telomere length in breast cancer patients before and after chemotherapy with or without stem cell transplantation. Br J Cancer 2001; 84: 1348–1353.

    Article  CAS  PubMed  Google Scholar 

  58. Allsopp RC, Chesier S & Weissman IL . Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic cells. J Exp Med 2001; 8: 917–924.

    Article  Google Scholar 

  59. Allsopp RC & Weissman IL . Replicative senescence of hematopoietic stem cells during serial transplantation: does telomere shortening play a role?. Oncogene 2002; 21: 3270–3273.

    Article  CAS  PubMed  Google Scholar 

  60. Samper E, Fernandez P, Eguia R, Martin-Rivera L, Bernad A, Blasco MA & Aracil M . Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells. Blood 2002; 15: 2767–2775.

    Article  Google Scholar 

  61. Gonzalez-Suarez E, Samper E, Flores JM & Blasco MA . Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 2000; 26: 114–117.

    Article  CAS  PubMed  Google Scholar 

  62. Goytisolo FA, Samper E, Martin-Caballero J, Finnon P, Herrera E, Flores JM, Bouffler SD & Blasco MA . Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. J Exp Med 2000; 192: 1625–1636.

    Article  CAS  PubMed  Google Scholar 

  63. Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, Greider CW & DePinho RA . p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 1999; 97: 527–538.

    Article  CAS  PubMed  Google Scholar 

  64. Rudolph KL, Millard M, Bosenberg MW & DePinho RA . Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 2001; 28: 155–159.

    Article  CAS  PubMed  Google Scholar 

  65. Wright WE & Shay JW . Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nature Med 2000; 6: 849–851.

    Article  CAS  PubMed  Google Scholar 

  66. Effros RB & Globerson A . Hematopoietic cells and replicative senescence. Exp Gerontol 2002; 37: 191–196.

    Article  CAS  PubMed  Google Scholar 

  67. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher C, Greider CW & Harley CB . Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 1992; 89: 10114–10118.

    Article  CAS  PubMed  Google Scholar 

  68. Korniszewski L, Nowak R, Okninska-Hoffmann E, Skorka A, Gieruszczak-Bialek D & Sawadro-Rochowska M . Wiedemann–Rautenstrauch (neonatal progeroid) syndrome: new case with normal telomere length in skin fibroblasts. Am J Hum Genet 2001; 103: 144–148.

    Article  CAS  Google Scholar 

  69. Boultwood J, Peniket A, Watkins F, Shepherd P, McGale P, Richards S, Fidler C, Littlewood TJ & Wainscoat JS . Telomere length shortening in chronic myelogenous leukemia is associated with reduced time to accelerated phase. Blood 2000; 96: 358–361.

    CAS  PubMed  Google Scholar 

  70. Ohyashiki JH, Iwama H, Yahata N, Ando K, Hayashi S, Shay JW & Ohyashiki K . Telomere stability is frequently impaired in high-risk groups of patients with myelodysplastic syndromes. Clin Cancer Res 1999; 5: 1155–1160.

    CAS  PubMed  Google Scholar 

  71. Scheel C, Schaefer KL, Jauch A, Keller M, Wai D, Brinkschmidt C, van Valen F, Boecker W, Dockhorn-Dworniczak B & Poremba C . Alternative lengthening of telomeres is associated with chromosomal instability in osteosarcomas. Oncogene 2001; 20: 3835–3844.

    Article  CAS  PubMed  Google Scholar 

  72. Baerlocher GM, Mak J, Tien T & Lansdorp PM . Telomere length measurement by fluorescence in situ hybridization and flow cytometry: tips and pitfalls. Cytometry 2002; 47: 89–99.

    Article  CAS  PubMed  Google Scholar 

  73. Hemann MT, Strong MA, Hao LY & Greider CW . The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 2001; 107: 67–77.

    Article  CAS  PubMed  Google Scholar 

  74. Goytisolo FA & Blasco MA . Many ways to telomere dysfunction: in vivo studies using mouse models. Oncogene 2002; 21: 584–591.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by NIH Cancer Center Support Grants CA-08748 and CA-67842, the Gar Reichman Fund of the Cancer Research Institute. SF received support from the Laura Rosenberg Foundation. The authors are indebted to Ms Maureen Sullivan, Mr Koji Shido, Ms Diane Ngok, Ms Hong Cao and Ms Bethany Sallinen for technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franco, S., Ozkaynak, M., Sandoval, C. et al. Telomere dynamics in childhood leukemia and solid tumors: a follow-up study. Leukemia 17, 401–410 (2003). https://doi.org/10.1038/sj.leu.2402815

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402815

Keywords

This article is cited by

Search

Quick links