Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on Acute Promyelocytic Leukemia

Signaling revisited in acute promyelocytic leukemia

Abstract

Although transcription factors are still the main focus to understanding leukemogenesis, recent results strongly suggest that alteration of a receptor and/or subsequent signaling plays a critical and co-operative role in the pathogenesis of acute myeloid leukemia (AML). The t(15;17) translocation, found in 95% of APL, encodes a PML-RARα fusion protein. A main model proposed for acute promyelocytic leukemia (APL) is that PML-RARα exerts its oncogenic effects by repressing retinoic acid-inducible genes critical to myeloid differentiation. Dysregulation of these genes may result in abnormal signaling, thereby freeing pre-leukemic cells from controls which normally induce the onset of differentiation. It is also likely that treatment of APL cells by retinoic acid induces de novo up-regulation of the same genes which are dominantly repressed by PML-RARα and whose expression is required for reactivation of the differentiation program. Identification of such genes together with the signaling pathways interrupted at the early stages of leukemia transformation and reactivated during retinoic acid-induced differentiation in APL cells will contribute to the development of new molecular targets for treatment of leukemia.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE . Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice Science 1992 255: 1137–1141

    CAS  PubMed  Google Scholar 

  2. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE . A cell initiating human acute myeloid leukaemia after transplantation into SCID mice Nature 1994 367: 645–648

    Article  CAS  PubMed  Google Scholar 

  3. Sirard C, Lapidot T, Vormoor J, Cashman JD, Doedens M, Murdoch B, Jamal N, Messner H, Addey L, Minden M, Laraya P, Keating A, Eaves A, Lansdorp PM, Eaves CJ, Dick JE . Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis Blood 1996 87: 1539–1548

    CAS  PubMed  Google Scholar 

  4. Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M, Ohki M, Hayashi Y . Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13) Blood 1997 90: 4699–4704

    CAS  PubMed  Google Scholar 

  5. Look AT . Oncogenic transcription factors in the human acute leukemias Science 1997 278: 1059–1064

    CAS  PubMed  Google Scholar 

  6. Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S, Behre G, Hiddemann W, Tenen DG . Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia Nat Genet 2001 27: 263–270

    CAS  PubMed  Google Scholar 

  7. Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ . Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences Blood 1997 89: 376–387

    CAS  PubMed  Google Scholar 

  8. He LZ, Tribioli C, Rivi R, Peruzzi D, Pelicci PG, Soares V, Cattoretti G, Pandolfi PP . Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice Proc Natl Acad Sci USA 1997 94: 5302–5307

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Okuda T, Cai Z, Yang S, Lenny N, Lyu CJ, van Deursen JM, Harada H, Downing JR . Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors Blood 1998 91: 3134–3143

    CAS  PubMed  Google Scholar 

  10. Castilla LH, Garrett L, Adya N, Orlic D, Dutra A, Anderson S, Owens J, Eckhaus M, Bodine D, Liu PP . The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia Nat Genet 1999 23: 144–146

    CAS  PubMed  Google Scholar 

  11. Rhoades KL, Hetherington CJ, Harakawa N, Yergeau DA, Zhou L, Liu LQ, Little MT, Tenen DG, Zhang DE . Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model Blood 2000 96: 2108–2115

    CAS  PubMed  Google Scholar 

  12. Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, Sonoda Y, Abe T, Kahsima K, Matsuo Y, Naoe T . Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines Leukemia 1997 11: 1605–1609

    CAS  PubMed  Google Scholar 

  13. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, Akiyama H, Saito K, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Saito H, Ueda R, Ohno R, Naoe T . Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies Blood 2001 97: 2434–2439

    CAS  PubMed  Google Scholar 

  14. Dash A, Gilliland DG . Molecular genetics of acute myeloid leukaemia Best Pract Res Clin Haematol 2001 14: 49–64

    CAS  PubMed  Google Scholar 

  15. Gishizky ML, Witte ON . Initiation of deregulated growth of multipotent progenitor cells by bcr- abl in vitro Science 1992 256: 836–839

    CAS  PubMed  Google Scholar 

  16. Cook WD, Metcalf D, Nicola NA, Burgess AW, Walker F . Malignant transformation of a growth factor-dependent myeloid cell line by Abelson virus without evidence of an autocrine mechanism Cell 1985 41: 677–683

    CAS  PubMed  Google Scholar 

  17. Daley GQ, Baltimore D . Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein Proc Natl Acad Sci USA 1988 85: 9312–9316

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tobal K, Pagliuca A, Bhatt B, Bailey N, Layton DM, Mufti GJ . Mutation of the human FMS gene (M-CSF receptor) in myelodysplastic syndromes and acute myeloid leukemia Leukemia 1990 4: 486–489

    CAS  PubMed  Google Scholar 

  19. Dosil M, Wang S, Lemischka IR . Mitogenic signalling and substrate specificity of the Flk2/Flt3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells Mol Cell Biol 1993 13: 6572–6585

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Reuter CW, Morgan MA, Bergmann L . Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood 2000 96: 1655–1669

    CAS  PubMed  Google Scholar 

  21. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG . FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model Blood 2002 99: 310–318

    CAS  PubMed  Google Scholar 

  22. Birkenkamp KU, Geugien M, Lemmink HH, Kruijer W, Vellenga E . Regulation of constitutive STAT5 phosphorylation in acute myeloid leukemia blasts Leukemia 2001 15: 1923–1931

    CAS  PubMed  Google Scholar 

  23. Srinivasa SP, Doshi PD . Extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways cooperate in mediating cytokine-induced proliferation of a leukemic cell line Leukemia 2002 16: 244–253

    CAS  PubMed  Google Scholar 

  24. Dong F, Hoefsloot LH, Schelen AM, Broeders CA, Meijer Y, Veerman AJ, Touw IP, Lowenberg B . Identification of a nonsense mutation in the granulocyte-colony-stimulating factor receptor in severe congenital neutropenia Proc Natl Acad Sci USA 1994 91: 4480–4484

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dong F, Brynes RK, Tidow N, Welte K, Lowenberg B, Touw IP . Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia N Engl J Med 1995 333: 487–493

    CAS  PubMed  Google Scholar 

  26. Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G . Filgrastim (r-metHuG-CSF): the first 10 years Blood 1996 88: 1907–1929

    CAS  PubMed  Google Scholar 

  27. Tidow N, Pilz C, Teichmann B, Muller-Brechlin A, Germeshausen M, Kasper B, Rauprich P, Sykora KW, Welte K . Clinical relevance of point mutations in the cytoplasmic domain of the granulocyte colony-stimulating factor receptor gene in patients with severe congenital neutropenia Blood 1997 89: 2369–2375

    CAS  PubMed  Google Scholar 

  28. Touw IP, Dong F . Severe congenital neutropenia terminating in acute myeloid leukemia: disease progression associated with mutations in the granulocyte-colony stimulating factor receptor gene Leuk Res 1996 20: 629–631

    CAS  PubMed  Google Scholar 

  29. Dale DC, Bonilla MA, Davis MW, Nakanishi AM, Hammond WP, Kurtzberg J, Wang W, Jakubowski A, Winton E, Lalezari P . A randomized controlled phase III trial of recombinant human granulocyte colony-stimulating factor (filgrastim) for treatment of severe chronic neutropenia Blood 1993 81: 2496–2502

    CAS  PubMed  Google Scholar 

  30. Hunter MG, Avalos BR . Deletion of a critical internalization domain in the G-CSFR in acute myelogenous leukemia preceded by severe congenital neutropenia Blood 1999 93: 440–446

    CAS  PubMed  Google Scholar 

  31. Da Silva N, Meyer-Monard S, Menot ML, Parrado A, Lebel A, Balitrand N, Fenaux P, Miclea JM, Rousselot P, Degos L, Dombret H, Chomienne C . Functional G-CSF pathways in t(8;21) leukemic cells allow for differentiation induction and degradation of AML1-ETO Hematol J 2000 1: 316–328

    CAS  PubMed  Google Scholar 

  32. Golub TR, Barker GF, Lovett M, Gilliland DG . Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation Cell 1994 77: 307–316

    CAS  PubMed  Google Scholar 

  33. Sawyers CL . Molecular abnormalities in myeloid leukemias and myelodysplastic syndromes Leuk Res 1998 22: 1113–1122

    CAS  PubMed  Google Scholar 

  34. Bourgeade MF, Defachelles AS, Cayre YE . Myc is essential for transformation by TEL/platelet-derived growth factor receptor beta (PDGFRbeta) Blood 1998 91: 3333–3339

    CAS  PubMed  Google Scholar 

  35. Papadopoulos P, Ridge SA, Boucher CA, Stocking C, Wiedemann LM . The novel activation of ABL by fusion to an ets-related gene, TEL Cancer Res 1995 55: 34–38

    CAS  PubMed  Google Scholar 

  36. Golub TR, Goga A, Barker GF, Afar DE, McLaughlin J, Bohlander SK, Rowley JD, Witte ON, Gilliland DG . Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia Mol Cell Biol 1996 16: 4107–4116

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bollag G, Clapp DW, Shih S, Adler F, Zhang YY, Thompson P, Lange BJ, Freedman MH, McCormick F, Jacks T, Shannon K . Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells Nat Genet 1996 12: 144–148

    CAS  PubMed  Google Scholar 

  38. Largaespada DA, Brannan CI, Jenkins NA, Copeland NG . Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia Nat Genet 1996 12: 137–143

    CAS  PubMed  Google Scholar 

  39. Melnick A, Licht JD . Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia Blood 1999 93: 3167–3215

    CAS  PubMed  Google Scholar 

  40. Zelent A, Guidez F, Melnick A, Waxman S, Licht JD . Translocations of the RARalpha gene in acute promyelocytic leukemia Oncogene 2001 20: 7186–7203

    CAS  PubMed  Google Scholar 

  41. Chambon P . A decade of molecular biology of retinoic acid receptors FASEB J 1996 10: 940–954

    CAS  PubMed  Google Scholar 

  42. Douer D, Ramezani L, Parker J, Levine AM . All-trans-retinoic acid effects the growth, differentiation and apoptosis of normal human myeloid progenitors derived from purified CD34+ bone marrow cells Leukemia 2000 14: 874–881

    CAS  PubMed  Google Scholar 

  43. Kastner P, Chan S . Function of RARalpha during the maturation of neutrophils Oncogene 2001 20: 7178–7185

    CAS  PubMed  Google Scholar 

  44. Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C, Grosveld F, Pandolfi PP . Role of PML in cell growth and the retinoic acid pathway Science 1998 279: 1547–1551

    CAS  PubMed  Google Scholar 

  45. Quignon F, De Bels F, Koken M, Feunteun J, Ameisen JC, de The H . PML induces a novel caspase-independent death process Nat Genet 1998 20: 259–265

    CAS  PubMed  Google Scholar 

  46. Pearson M, Pelicci PG . PML interaction with p53 and its role in apoptosis and replicative senescence Oncogene 2001 20: 7250–7256

    CAS  PubMed  Google Scholar 

  47. Barna M, Hawe N, Niswander L, Pandolfi PP . Plzf regulates limb and axial skeletal patterning Nat Genet 2000 25: 166–172

    CAS  PubMed  Google Scholar 

  48. Rowley JD, Golomb HM, Dougherty C . 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia Lancet 1977 1: 549–550

    CAS  PubMed  Google Scholar 

  49. Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, Gu LJ, Wang ZY . Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia Blood 1988 72: 567–572

    CAS  PubMed  Google Scholar 

  50. Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L . All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results Blood 1990 76: 1704–1709

    CAS  PubMed  Google Scholar 

  51. Chomienne C, Ballerini P, Balitrand N, Daniel MT, Fenaux P, Castaigne S, Degos L . All-trans retinoic acid in acute promyelocytic leukemias. II. In vitro studies: structure–function relationship Blood 1990 76: 1710–1717

    CAS  PubMed  Google Scholar 

  52. Warrell RP Jr, Frankel SR, Miller WH Jr, Scheinberg DA, Itri LM, Hittelman WN, Vyas R, Andreeff M, Tafuri A, Jakubowski A, Gabrilove J, Gordon MS, Dmitrovsky E . Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid) N Engl J Med 1991 324: 1385–1393

    PubMed  Google Scholar 

  53. He LZ, Merghoub T, Pandolfi PP . In vivo analysis of the molecular pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic implications Oncogene 1999 18: 5278–5292

    CAS  PubMed  Google Scholar 

  54. Kogan SC, Bishop JM . Acute promyelocytic leukemia: from treatment to genetics and back Oncogene 1999 18: 5261–5267

    CAS  PubMed  Google Scholar 

  55. Pollock JL, Westervelt P, Kurichety AK, Pelicci PG, Grisolano JL, Ley TJ . A bcr-3 isoform of RARalpha-PML potentiates the development of PML- RARalpha-driven acute promyelocytic leukemia Proc Natl Acad Sci USA 1999 96: 15103–15108

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kelly LM, Kutok JL, Williams IR, Boulton CL, Amaral SM, Curley DP, Ley TJ, Gilliland DG . PML/RARa and FLT3-ITD induce an APL-like disease in a mouse model Proc Natl Acad Sci USA 2002 99: 8283–8288

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin RJ, Egan DA, Evans RM . Molecular genetics of acute promyelocytic leukemia Trends Genet 1999 15: 179–184

    CAS  PubMed  Google Scholar 

  58. Collins SJ . Acute promyelocytic leukemia: relieving repression induces remission Blood 1998 91: 2631–2633

    CAS  PubMed  Google Scholar 

  59. Benedetti L, Grignani F, Scicchitano BM, Jetten AM, Diverio D, Lo Coco F, Avvisati G, Gambacorti-Passerini C, Adamo S, Levin AA, Pelicci PG, Nervi C . Retinoid-induced differentiation of acute promyelocytic leukemia involves PML-RARalpha-mediated increase of type II transglutaminase Blood 1996 87: 1939–1950

    CAS  PubMed  Google Scholar 

  60. Eitan S, Schwartz M . A transglutaminase that converts interleukin-2 into a factor cytotoxic to oligodendrocytes Science 1993 261: 106–108

    CAS  PubMed  Google Scholar 

  61. Kojima S, Nara K, Rifkin DB . Requirement for transglutaminase in the activation of latent transforming growth factor-beta in bovine endothelial cells J Cell Biol 1993 121: 439–448

    CAS  PubMed  Google Scholar 

  62. Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K, Im MJ, Graham RM . Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function Science 1994 264: 1593–1596

    CAS  PubMed  Google Scholar 

  63. Fesus L, Thomazy V, Falus A . Induction and activation of tissue transglutaminase during programmed cell death FEBS Lett 1987 224: 104–108

    CAS  PubMed  Google Scholar 

  64. Joseph B, Lefebvre O, Mereau-Richard C, Danze PM, Belin-Plancot MT, Formstecher P . Evidence for the involvement of both retinoic acid receptor- and retinoic X receptor-dependent signaling pathways in the induction of tissue transglutaminase and apoptosis in the human myeloma cell line RPMI 8226 Blood 1998 91: 2423–2432

    CAS  PubMed  Google Scholar 

  65. Casini T, Pelicci PG . A function of p21 during promyelocytic leukemia cell differentiation independent of CDK inhibition and cell cycle arrest Oncogene 1999 18: 3235–3243

    CAS  PubMed  Google Scholar 

  66. Nervi C, Ferrara FF, Fanelli M, Rippo MR, Tomassini B, Ferrucci PF, Ruthardt M, Gelmetti V, Gambacorti-Passerini C, Diverio D, Grignani F, Pelicci PG, Testi R . Caspases mediate retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARalpha fusion protein Blood 1998 92: 2244–2251

    CAS  PubMed  Google Scholar 

  67. Kitareewan S, Pitha-Rowe I, Sekula D, Lowrey CH, Nemeth MJ, Golub TR, Freemantle SJ, Dmitrovsky E . UBE1L is a retinoid target that triggers PML/RARalpha degradation and apoptosis in acute promyelocytic leukemia Proc Natl Acad Sci USA 2002 99: 3806–3811

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamanaka R, Lekstrom-Himes J, Barlow C, Wynshaw-Boris A, Xanthopoulos KG . CCAAT/enhancer binding proteins are critical components of the transcriptional regulation of hematopoiesis Int J Mol Med 1998 1: 213–221

    CAS  PubMed  Google Scholar 

  69. Park DJ, Chumakov AM, Vuong PT, Chih DY, Gombart AF, Miller WH Jr, Koeffler HP . CCAAT/enhancer binding protein epsilon is a potential retinoid target gene in acute promyelocytic leukemia treatment J Clin Invest 1999 103: 1399–1408

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, Berger R . NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3) Blood 1991 77: 1080–1086

    CAS  PubMed  Google Scholar 

  71. Guibal FC, Moog-Lutz C, Smolewski P, Di Gioia Y, Darzynkiewicz Z, Lutz PG, Cayre YE . ASB-2 inhibits growth and promotes commitment in myeloid leukemia cells J Biol Chem 2002 277: 218–224

    CAS  PubMed  Google Scholar 

  72. Moog-Lutz C, Peterson EJ, Lutz PG, Eliason S, Cave-Riant F, Singer A, Di Gioia Y, Dmowski S, Kamens J, Cayre YE, Koretzky G . PRAM-1 is a novel adaptor protein regulated by retinoic acid (RA) and promyelocytic leukemia (PML)-RA receptor alpha in acute promyelocytic leukemia cells J Biol Chem 2001 276: 22375–22381

    CAS  PubMed  Google Scholar 

  73. Kastner P, Lawrence HJ, Waltzinger C, Ghyselinck NB, Chambon P, Chan S . Positive and negative regulation of granulopoiesis by endogenous RARalpha Blood 2001 97: 1314–1320

    CAS  PubMed  Google Scholar 

  74. Tsai S, Collins SJ . A dominant negative retinoic acid receptor blocks neutrophil differentiation at the promyelocyte stage Proc Natl Acad Sci USA 1993 90: 7153–7157

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsai S, Bartelmez S, Sitnicka E, Collins S . Lymphohematopoietic progenitors immortalized by a retroviral vector harboring a dominant-negative retinoic acid receptor can recapitulate lymphoid, myeloid, and erythroid development Genes Dev 1994 8: 2831–2841

    CAS  PubMed  Google Scholar 

  76. Labbaye C, Valtieri M, Testa U, Giampaolo A, Meccia E, Sterpetti P, Parolini I, Pelosi E, Bulgarini D, Cayre YE . Retinoic acid downmodulates erythroid differentiation and GATA1 expression in purified adult-progenitor culture Blood 1994 83: 651–656

    CAS  PubMed  Google Scholar 

  77. Paul CC, Mahrer S, Tolbert M, Elbert BL, Wong I, Ackerman SJ, Baumann MA . Changing the differentiation program of hematopoietic cells: retinoic acid-induced shift of eosinophil-committed cells to neutrophils Blood 1995 86: 3737–3744

    CAS  PubMed  Google Scholar 

  78. Du C, Redner RL, Cooke MP, Lavau C . Overexpression of wild-type retinoic acid receptor alpha (RARalpha) recapitulates retinoic acid-sensitive transformation of primary myeloid progenitors by acute promyelocytic leukemia RARalpha-fusion genes Blood 1999 94: 793–802

    CAS  PubMed  Google Scholar 

  79. Johnson BS, Mueller L, Si J, Collins SJ . The cytokines IL-3 and GM-CSF regulate the transcriptional activity of retinoic acid receptors in different in vitro models of myeloid differentiation Blood 2002 99: 746–753

    CAS  PubMed  Google Scholar 

  80. Benoit G, Roussel M, Pendino F, Segal-Bendirdjian E, Lanotte M . Orchestration of multiple arrays of signal cross-talk and combinatorial interactions for maturation and cell death: another vision of t(15;17) preleukemic blast and APL-cell maturation Oncogene 2001 20: 7161–7177

    CAS  PubMed  Google Scholar 

  81. Gallagher RE, Lurie KJ, Leavitt RD, Wiernik PH . Effects of interferon and retinoic acid on the growth and differentiation of clonogenic leukemic cells from acute myelogenous leukemia patients treated with recombinant leukocyte-alpha A interferon Leuk Res 1987 11: 609–619

    CAS  PubMed  Google Scholar 

  82. Nason-Burchenal K, Gandini D, Botto M, Allopenna J, Seale JR, Cross NC, Goldman JM, Dmitrovsky E, Pandolfi PP . Interferon augments PML and PML/RAR alpha expression in normal myeloid and acute promyelocytic cells and cooperates with all-trans retinoic acid to induce maturation of a retinoid-resistant promyelocytic cell line Blood 1996 88: 3926–3936

    CAS  PubMed  Google Scholar 

  83. Gianni M, Terao M, Fortino I, LiCalzi M, Viggiano V, Barbui T, Rambaldi A, Garattini E . Stat1 is induced and activated by all-trans retinoic acid in acute promyelocytic leukemia cells Blood 1997 89: 1001–1012

    CAS  PubMed  Google Scholar 

  84. Kolla V, Weihua X, Kalvakolanu DV . Modulation of interferon action by retinoids. Induction of murine STAT1 gene expression by retinoic acid J Biol Chem 1997 272: 9742–9748

    CAS  PubMed  Google Scholar 

  85. Matikainen S, Lehtonen A, Sareneva T, Julkunen I . Regulation of IRF and STAT gene expression by retinoic acid Leuk Lymphoma 1998 30: 63–71

    CAS  PubMed  Google Scholar 

  86. Hall RE, Agarwal S, Kestler DP, Cobb JA, Goldstein KM, Chang NS . cDNA and genomic cloning and expression of the P48 monocytic differentiation/activation factor, a Mycoplasma fermentans gene product Biochem J 1996 319: 919–927

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Pelicano L, Li F, Schindler C, Chelbi-Alix MK . Retinoic acid enhances the expression of interferon-induced proteins: evidence for multiple mechanisms of action Oncogene 1997 15: 2349–2359

    CAS  PubMed  Google Scholar 

  88. Pelicano L, Brumpt C, Pitha PM, Chelbi-Alix MK . Retinoic acid resistance in NB4 APL cells is associated with lack of interferon alpha synthesis Stat1 and p48 induction Oncogene 1999 18: 3944–3953

    CAS  PubMed  Google Scholar 

  89. Dimberg A, Nilsson K, Oberg F . Phosphorylation-deficient Stat1 inhibits retinoic acid-induced differentiation and cell cycle arrest in U-937 monoblasts Blood 2000 96: 2870–2878

    CAS  PubMed  Google Scholar 

  90. Olsson IL, Breitman TR, Gallo RC . Priming of human myeloid leukemic cell lines HL-60 and U-937 with retinoic acid for differentiation effects of cyclic adenosine 3′:5′-monophosphate-inducing agents and a T-lymphocyte-derived differentiation factor Cancer Res 1982 42: 3928–3933

    CAS  PubMed  Google Scholar 

  91. Ruchaud S, Duprez E, Gendron MC, Houge G, Genieser HG, Jastorff B, Doskeland SO, Lanotte M . Two distinctly regulated events, priming and triggering, during retinoid-induced maturation and resistance of NB4 promyelocytic leukemia cell line Proc Natl Acad Sci USA 1994 91: 8428–8432

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Deshpande RV, Peterson RH, Moore MA . Granulocyte colony-stimulating factor activates protein kinase A in granulocytic but not monocytic precursors or neutrophils J Interferon Cytokine Res 1998 18: 579–586

    CAS  PubMed  Google Scholar 

  93. Benoit G, Altucci L, Flexor M, Ruchaud S, Lillehaug J, Raffelsberger W, Gronemeyer H, Lanotte M . RAR-independent RXR signaling induces t(15;17) leukemia cell maturation EMBO J 1999 18: 7011–7018

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhu Q, Zhang JW, Zhu HQ, Shen YL, Flexor M, Jia PM, Yu Y, Cai X, Waxman S, Lanotte M, Chen SJ, Chen Z, Tong JH . Synergic effects of arsenic trioxide and cAMP during acute promyelocytic leukemia cell maturation subtends a novel signaling cross- talk Blood 2002 99: 1014–1022

    CAS  PubMed  Google Scholar 

  95. Spiekermann K, Biethahn S, Wilde S, Hiddemann W, Alves F . Constitutive activation of STAT transcription factors in acute myelogenous leukemia Eur J Haematol 2001 67: 63–71

    CAS  PubMed  Google Scholar 

  96. Tkatch LS, Rubin KA, Ziegler SF, Tweardy DJ . Modulation of human G-CSF receptor mRNA and protein in normal and leukemic myeloid cells by G-CSF and retinoic acid J Leukoc Biol 1995 57: 964–971

    CAS  PubMed  Google Scholar 

  97. Gianni M, Terao M, Zanotta S, Barbui T, Rambaldi A, Garattini E . Retinoic acid and granulocyte colony-stimulating factor synergistically induce leukocyte alkaline phosphatase in acute promyelocytic leukemia cells Blood 1994 83: 1909–1921

    CAS  PubMed  Google Scholar 

  98. Smeland EB, Rusten L, Jacobsen SE, Skrede B, Blomhoff R, Wang MY, Funderud S, Kvalheim G, Blomhoff HK . All-trans retinoic acid directly inhibits granulocyte colony-stimulating factor-induced proliferation of CD34+ human hematopoietic progenitor cells Blood 1994 84: 2940–2945

    CAS  PubMed  Google Scholar 

  99. Miyauchi J . All-trans retinoic acid and hematopoietic growth factors regulating the growth and differentiation of blast progenitors in acute promyelocytic leukemia Leuk Lymphoma 1999 33: 267–280

    CAS  PubMed  Google Scholar 

  100. Kishi K, Toba K, Azegami T, Tsukada N, Uesugi Y, Masuko M, Niwano H, Hashimoto S, Sakaue M, Furukawa T, Koike T, Takahashi H, Maekawa T, Abe T, Aizawa Y . Hematopoietic cytokine-dependent differentiation to eosinophils and neutrophils in a newly established acute promyelocytic leukemia cell line with t(15;17) Exp Hematol 1998 26: 135–142

    CAS  PubMed  Google Scholar 

  101. Shimodaira S, Kitano K, Nishizawa Y, Ichikawa N, Ishida F, Kamino I, Matsui H, Kiyosawa K . Acute myelogenous leukemia with a t(2;17;4)(p13;q21;p16) aberration: effective treatment with all-trans retinoic acid and granulocyte colony-stimulating factor J Intern Med 1999 38: 150–154

    CAS  Google Scholar 

  102. Jansen JH, de Ridder MC, Geertsma WM, Erpelinck CA, van Lom K, Smit EM, Slater R, vd Reijden BA, de Greef GE, Sonneveld P, Lowenberg B . Complete remission of t(11;17) positive acute promyelocytic leukemia induced by all-trans retinoic acid and granulocyte colony-stimulating factor Blood 1999 94: 39–45

    CAS  PubMed  Google Scholar 

  103. Corey SJ, Burkhardt AL, Bolen JB, Geahlen RL, Tkatch LS, Tweardy DJ . Granulocyte colony-stimulating factor receptor signaling involves the formation of a three-component complex with Lyn and Syk protein-tyrosine kinases Proc Natl Acad Sci USA 1994 91: 4683–4687

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to all the members of our group for helpful discussions and contribution. Work in our laboratory was supported by INSERM, CNRS, and grants from the Association pour la Recherche sur le Cancer, the Fondation de France, the Comité de Paris de La Ligue Contre le Cancer, the Lady Tata Memorial Trust, and the Leukemia Research Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutz, P., Moog-Lutz, C. & Cayre, Y. Signaling revisited in acute promyelocytic leukemia. Leukemia 16, 1933–1939 (2002). https://doi.org/10.1038/sj.leu.2402728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402728

Keywords

This article is cited by

Search

Quick links