Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on Acute Promyelocytic Leukemia

PML a target of translocations in APL is a regulator of cellular senescence

Abstract

PML is the most frequent fusion partner of the RARα in the specific translocations associated with acute promyelocytic leukemia (APL). Models to explain the origin of this leukemia propose a block in cell differentiation due to aberrant repression of retinoic acid responsive genes and/or disruption of the function of the PML-containing nuclear bodies. Recently, PML has been identified as a regulator of replicative senescence and the premature senescence that occurs in response to oncogenic ras. This review discusses the idea that senescence is a general tumor suppressor mechanism related to terminal differentiation and disrupted during the establishment of APL and other cancers. According to this idea the PML-RARα fusion protein promotes leukemogenesis not only through repression of retinoic acid responsive genes, but also by way of interfering with several tumor suppressor proteins that cooperate to establish senescence. Retinoids and other drugs effective against APL do so by re-establishment of the senescence program, which also includes features of cell differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Melnick A, Licht JD . Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia Blood 1999 93: 3167–3215

    Article  CAS  PubMed  Google Scholar 

  2. Pandolfi PP . In vivo analysis of the molecular genetics of acute promyelocytic leukemia Oncogene 2001 20: 5726–5735

    Article  CAS  PubMed  Google Scholar 

  3. Liu TX, Zhang JW, Tao J, Zhang RB, Zhang QH, Zhao CJ, Tong JH, Lanotte M, Waxman S, Chen SJ, Mao M, Hu GX, Zhu L, Chen Z . Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells Blood 2000 96: 1496–1504

    Article  CAS  PubMed  Google Scholar 

  4. Chen JD, Evans RM . A transcriptional co-repressor that interacts with nuclear hormone receptors Nature 1995 377: 454–457

    Article  CAS  PubMed  Google Scholar 

  5. Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass CK, Rosenfeld MG . Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor Nature 1995 377: 397–404

    Article  CAS  PubMed  Google Scholar 

  6. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Lazar MA, Minucci S, Pelicci PG . Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia Nature 1998 391: 815–818

    Article  CAS  PubMed  Google Scholar 

  7. Torchia J, Glass C, Rosenfeld MG . Co-activators and co-repressors in the integration of transcriptional responses Curr Opin Cell Biol 1998 10: 373–383

    Article  CAS  PubMed  Google Scholar 

  8. Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ . Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences Blood 1997 89: 376–387

    Article  CAS  PubMed  Google Scholar 

  9. He LZ, Tribioli C, Rivi R, Peruzzi D, Pelicci PG, Soares V, Cattoretti G, Pandolfi PP . Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice Proc Natl Acad Sci USA 1997 94: 5302–5307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brown D, Kogan S, Lagasse E, Weissman I, Alcalay M, Pelicci PG, Atwater S, Bishop JM . A PMLRARalpha transgene initiates murine acute promyelocytic leukemia Proc Natl Acad Sci USA 1997 94: 2551–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A, Pandolfi PP . Distinct interactions of PML-RARalpha and PLZF-RARalpha with co- repressors determine differential responses to RA in APL Nat Genet 1998 18: 126–135

    Article  CAS  PubMed  Google Scholar 

  12. Cheng GX, Zhu XH, Men XQ, Wang L, Huang QH, Jin XL, Xiong SM, Zhu J, Guo WM, Chen JQ, Xu SF, So E, Chan LC, Waxman S, Zelent A, Chen GQ, Dong S, Liu JX, Chen SJ . Distinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF-RARalpha and NPM-RARalpha Proc Natl Acad Sci USA 1999 96: 6318–6323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Collins SJ, Robertson KA, Mueller L . Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor (RAR-alpha) Mol Cell Biol 1990 10: 2154–2163

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Perez A, Kastner P, Sethi S, Lutz Y, Reibel C, Chambon P . PMLRAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR EMBO J 1993 12: 3171–3182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin RJ, Evans RM . Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers Mol Cell 2000 5: 821–830

    Article  CAS  PubMed  Google Scholar 

  16. Minucci S, Maccarana M, Cioce M, De Luca P, Gelmetti V, Segalla S, Di Croce L, Giavara S, Matteucci C, Gobbi A, Bianchini A, Colombo E, Schiavoni I, Badaracco G, Hu X, Lazar MA, Landsberger N, Nervi C, Pelicci PG . Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation Mol Cell 2000 5: 811–820

    Article  CAS  PubMed  Google Scholar 

  17. Lin RJ, Sternsdorf T, Tini M, Evans RM . Transcriptional regulation in acute promyelocytic leukemia Oncogene 2001 20: 7204–7215

    Article  CAS  PubMed  Google Scholar 

  18. Labrecque J, Allan D, Chambon P, Iscove NN, Lohnes D, Hoang T . Impaired granulocytic differentiation in vitro in hematopoietic cells lacking retinoic acid receptors alpha1 and gamma Blood 1998 92: 607–615

    Article  CAS  PubMed  Google Scholar 

  19. Kastner P, Lawrence HJ, Waltzinger C, Ghyselinck NB, Chambon P, Chan S . Positive and negative regulation of granulopoiesis by endogenous RARalpha Blood 2001 97: 1314–1320

    Article  CAS  PubMed  Google Scholar 

  20. Kuwata T, Wang IM, Tamura T, Ponnamperuma RM, Levine R, Holmes KL, Morse HC, De Luca LM, Ozato K . Vitamin A deficiency in mice causes a systemic expansion of myeloid cells Blood 2000 95: 3349–3356

    Article  CAS  PubMed  Google Scholar 

  21. Casini T, Pelicci PG . A function of p21 during promyelocytic leukemia cell differentiation independent of CDK inhibition and cell cycle arrest Oncogene 1999 18: 3235–3243

    Article  CAS  PubMed  Google Scholar 

  22. Park DJ, Chumakov AM, Vuong PT, Chih DY, Gombart AF, Miller WH Jr, Koeffler HP . CCAAT/enhancer binding protein epsilon is a potential retinoid target gene in acute promyelocytic leukemia treatment J Clin Invest 1999 103: 1399–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR . Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation Proc Natl Acad Sci USA 1999 96: 2907–2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hauksdottir H, Privalsky ML . DNA recognition by the aberrant retinoic acid receptors implicated in human acute promyelocytic leukemia Cell Growth Differ 2001 12: 85–98

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Piazza F, Gurrieri C, Pandolfi PP . The theory of APL Oncogene 2001 20: 7216–7222

    Article  CAS  PubMed  Google Scholar 

  26. Rego EM, Wang ZG, Peruzzi D, He LZ, Cordon-Cardo C, Pandolfi PP . Role of promyelocytic leukemia (PML) protein in tumor suppression J Exp Med 2001 193: 521–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He L, Bhaumik M, Tribioli C, Rego EM, Ivins S, Zelent A, Pandolfi PP . Two critical hits for promyelocytic leukemia Mol Cell 2000 6: 1131–1141

    Article  CAS  PubMed  Google Scholar 

  28. Dyck JA, Maul GG, Miller WH Jr, Chen JD, Kakizuka A, Evans RM . A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein Cell 1994 76: 333–343

    Article  CAS  PubMed  Google Scholar 

  29. Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M, Lamond A, Dejean A . Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells Cell 1994 76: 345–356

    Article  CAS  PubMed  Google Scholar 

  30. Koken MH, Reid A, Quignon F, Chelbi-Alix MK, Davies JM, Kabarowski JH, Zhu J, Dong S, Chen S, Chen Z, Tan CC, Licht J, Waxman S, de Thé H, Zelent A . Leukemia-associated retinoic acid receptor alpha fusion partners, PML and PLZF, heterodimerize and colocalize to nuclear bodies Proc Natl Acad Sci USA 1997 94: 10255–10260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brasch K, Ochs RL . Nuclear bodies (NBs: a newly ‘rediscovered’ organelle Exp Cell Res 1992 202: 211–223

    Article  CAS  PubMed  Google Scholar 

  32. Grotzinger T, Sternsdorf T, Jensen K, Will H . Interferon-modulated expression of genes encoding the nuclear-dot- associated proteins Sp100 and promyelocytic leukemia protein (PML) Eur J Biochem 1996 238: 554–560

    Article  CAS  PubMed  Google Scholar 

  33. Stadler M, Chelbi-Alix MK, Koken MH, Venturini L, Lee C, Saib A, Quignon F, Pelicano L, Guillemin MC, Schindler C, de The H . Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element Oncogene 1995 11: 2565–2573

    CAS  PubMed  Google Scholar 

  34. Cho Y, Lee I, Maul GG, Yu E . A novel nuclear substructure, ND10: distribution in normal and neoplastic human tissues Int J Mol Med 1998 1: 717–724

    CAS  PubMed  Google Scholar 

  35. Zhong S, Salomoni P, Pandolfi PP . The transcriptional role of PML and the nuclear body Nat Cell Biol 2000 2: E85–E90

    Article  CAS  PubMed  Google Scholar 

  36. Cohen N, Sharma M, Kentsis A, Perez JM, Strudwick S, Borden KL . PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA EMBO J 2001 20: 4547–4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maul GG, Yu E, Ishov AM, Epstein AL . Nuclear domain 10 (ND10) associated proteins are also present in nuclear bodies and redistribute to hundreds of nuclear sites after stress J Cell Biochem 1995 59: 498–513

    Article  CAS  PubMed  Google Scholar 

  38. Hodges M, Tissot C, Howe K, Grimwade D, Freemont PS . Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies Am J Hum Genet 1998 63: 297–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW . PML is induced by oncogenic ras and promotes premature senescence Genes Dev 2000 14: 2015–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP, Pelicci PG . PML regulates p53 acetylation and premature senescence induced by oncogenic Ras Nature 2000 406: 207–210

    Article  CAS  PubMed  Google Scholar 

  41. Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W, Will H, Schmitz ML . Regulation of p53 activity by its interaction with homeodomain- interacting protein kinase-2 Nat Cell Biol 2002 10: 1–10

    Article  CAS  Google Scholar 

  42. D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli M, Appella E, Soddu S . Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis Nat Cell Biol 2002 10: 11–19

    Article  CAS  Google Scholar 

  43. Boisvert FM, Kruhlak MJ, Box AK, Hendzel MJ, Bazett-Jones DP . The transcription coactivator CBP is a dynamic component of the promyelocytic leukemia nuclear body J Cell Biol 2001 152: 1099–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li H, Leo C, Zhu J, Wu X, O'Neil J, Park EJ, Chen JD . Sequestration and inhibition of Daxx-mediated transcriptional repression by PML Mol Cell Biol 2000 20: 1784–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. LaMorte VJ, Dyck JA, Ochs RL, Evans RM . Localization of nascent RNA and CREB binding protein with the PML-containing nuclear body Proc Natl Acad Sci USA 1998 95: 4991–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boisvert FM, Hendzel MJ, Bazett-Jones DP . Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA J Cell Biol 2000 148: 283–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mu ZM, Chin KV, Liu JH, Lozano G, Chang KS . PML, a growth suppressor disrupted in acute promyelocytic leukemia Mol Cell Biol 1994 14: 6858–6867

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ahn MJ, Nason-Burchenal K, Moasser MM, Dmitrovsky E . Growth suppression of acute promyelocytic leukemia cells having increased expression of the non-rearranged alleles: RAR alpha or PML Oncogene 1995 10: 2307–2314

    CAS  PubMed  Google Scholar 

  49. Liu JH, Mu ZM, Chang KS . PML suppresses oncogenic transformation of NIH/3T3 cells by activated neu J Exp Med 1995 181: 1965–1973

    Article  CAS  PubMed  Google Scholar 

  50. He D, Mu ZM, Le X, Hsieh JT, Pong RC, Chung LW, Chang KS . Adenovirus-mediated expression of PML suppresses growth and tumorigenicity of prostate cancer cells Cancer Res 1997 57: 1868–1872

    CAS  PubMed  Google Scholar 

  51. Mu ZM, Le XF, Vallian S, Glassman AB, Chang KS . Stable overexpression of PML alters regulation of cell cycle progression in HeLa cells Carcinogenesis 1997 18: 2063–2069

    Article  CAS  PubMed  Google Scholar 

  52. Le XF, Vallian S, Mu ZM, Hung MC, Chang KS . Recombinant PML adenovirus suppresses growth and tumorigenicity of human breast cancer cells by inducing G1 cell cycle arrest and apoptosis Oncogene 1998 16: 1839–1849

    Article  CAS  PubMed  Google Scholar 

  53. Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R, Pandolfi PP . PML is essential for multiple apoptotic pathways Nat Genet 1998 20: 266–272

    Article  CAS  PubMed  Google Scholar 

  54. Quignon F, De Bels F, Koken M, Feunteun J, Ameisen JC, de The H . PML induces a novel caspase-independent death process Nat Genet 1998 20: 259–265

    Article  CAS  PubMed  Google Scholar 

  55. Zheng P, Guo Y, Niu Q, Levy DE, Dyck JA, Lu S, Sheiman LA, Liu Y . Proto-oncogene PML controls genes devoted to MHC class I antigen presentation Nature 1998 396: 373–376

    Article  CAS  PubMed  Google Scholar 

  56. Fabunmi RP, Wigley WC, Thomas PJ, DeMartino GN . Interferon gamma regulates accumulation of the proteasome activator PA28 and immunoproteasomes at nuclear PML bodies J Cell Sci 2001 114: 29–36

    Article  CAS  PubMed  Google Scholar 

  57. Shiels C, Islam SA, Vatcheva R, Sasieni P, Sternberg MJ, Freemont PS, Sheer D . PML bodies associate specifically with the MHC gene cluster in interphase nuclei J Cell Sci 2001 114: 3705–3716

    Article  CAS  PubMed  Google Scholar 

  58. Zhong S, Hu P, Ye TZ, Stan R, Ellis NA, Pandolfi PP . A role for PML and the nuclear body in genomic stability Oncogene 1999 18: 7941–7947

    Article  CAS  PubMed  Google Scholar 

  59. Jiang WQ, Ringertz N . Altered distribution of the promyelocytic leukemia-associated protein is associated with cellular senescence Cell Growth Differ 1997 8: 513–522

    CAS  PubMed  Google Scholar 

  60. Vallian S, Chin KV, Chang KS . The promyelocytic leukemia protein interacts with Sp1 and inhibits its transactivation of the epidermal growth factor receptor promoter Mol Cell Biol 1998 18: 7147–7156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hayflick L . The limited in vitro lifetime of human diploid cell strains Exp Cell Res 1965 37: 614–636

    Article  CAS  PubMed  Google Scholar 

  62. Harley CB, Futcher AB, Greider CW . Telomeres shorten during ageing of human fibroblasts Nature 1990 345: 458–460

    Article  CAS  PubMed  Google Scholar 

  63. Sedivy JM . Can ends justify the means? Telomeres and the mechanisms of replicative senescence and immortalization in mammalian cells Proc Natl Acad Sci USA 1998 95: 9078–9081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a Cell 1997 88: 593–602

    Article  CAS  PubMed  Google Scholar 

  65. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW . Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling Genes Dev 1998 12: 2997–3007

    Article  Google Scholar 

  66. Zhu J, Woods D, McMahon M, Bishop JM . Senescence of human fibroblasts induced by oncogenic Raf Genes Dev 1998 12: 3008–3019

    Article  Google Scholar 

  67. Dimri GP, Itahana K, Acosta M, Campisi J . Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor Mol Cell Biol 2000 20: 273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ogryzko VV, Hirai TH, Russanova VR, Barbie DA, Howard BH . Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent Mol Cell Biol 1996 16: 5210–5218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN . Oxidative DNA damage and senescence of human diploid fibroblast cells Proc Natl Acad Sci USA 1995 92: 4337–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. DiLeonardo A, Linke SP, Clarkin K, Wahl GM . DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts Genes Dev 1994 8: 2540–2551

    Article  CAS  Google Scholar 

  71. Robles SJ, Adami GR . Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts Oncogene 1998 16: 1113–1123

    Article  CAS  PubMed  Google Scholar 

  72. Toussaint O, Medrano EE, von Zglinicki T . Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes Exp Gerontol 2000 35: 927–945

    Article  CAS  PubMed  Google Scholar 

  73. Campisi J . Cellular senescence as a tumor-suppressor mechanism Trends Cell Biol 2001 11: S27–S31

    Article  CAS  PubMed  Google Scholar 

  74. Ferbeyre G, Lowe SW . The price of tumour suppression? Nature 2002 415: 26–27

    Article  CAS  PubMed  Google Scholar 

  75. Shay JW, Wright WE . Aging. When do telomeres matter? Science 2001 291: 839–840

    Article  CAS  PubMed  Google Scholar 

  76. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW . Specific association of human telomerase activity with immortal cells and cancer Science 1994 266: 2011–2015

    Article  CAS  PubMed  Google Scholar 

  77. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA . Creation of human tumour cells with defined genetic elements Nature 1999 400: 464–468

    Article  CAS  PubMed  Google Scholar 

  78. Kim K, Nose K, Shibanuma M . Significance of nuclear relocalization of ERK1/2 in reactivation of c- fos transcription and DNA synthesis in senescent fibroblasts J Biol Chem 2000 275: 20685–20692

    Article  Google Scholar 

  79. Lin AW, Lowe SW . Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation Proc Natl Acad Sci USA 2001 98: 5025–5030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jones CJ, Kipling D, Morris M, Hepburn P, Skinner J, Bounacer A, Wyllie FS, Ivan M, Bartek J, Wynford-Thomas D, Bond JA . Evidence for a telomere-independent ‘clock’ limiting RAS oncogene- driven proliferation of human thyroid epithelial cells Mol Cell Biol 2000 20: 5690–5699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. de Haan G, Nijhof W, Van Zant G . Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity Blood 1997 89: 1543–1550

    Article  CAS  PubMed  Google Scholar 

  82. De Haan G, Van Zant G . Genetic analysis of hemopoietic cell cycling in mice suggests its involvement in organismal life span Faseb J 1999 13: 707–713

    Article  CAS  PubMed  Google Scholar 

  83. Chen J, Astle CM, Harrison DE . Genetic regulation of primitive hematopoietic stem cell senescence Exp Hematol 2000 28: 442–450

    Article  CAS  PubMed  Google Scholar 

  84. Sherr CJ, DePinho RA . Cellular senescence: minireview mitotic clock or culture shock? Cell 2000 102: 407–410

    Article  CAS  PubMed  Google Scholar 

  85. Tang DG, Tokumoto YM, Apperly JA, Lloyd AC, Raff MC . Lack of replicative senescence in cultured rat oligodendrocyte precursor cells Science 2001 291: 868–871

    Article  CAS  PubMed  Google Scholar 

  86. Mathon NF, Malcolm DS, Harrisingh MC, Cheng L, Lloyd AC . Lack of replicative senescence in normal rodent glia Science 2001 291: 872–875

    Article  CAS  PubMed  Google Scholar 

  87. Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM, Lowe SW . A senescence program controlled by p53 and p16(INK4a) contributes to the outcome of cancer therapy Cell 2002 109: 335–346

    Article  CAS  PubMed  Google Scholar 

  88. Haddad MM, Xu W, Schwahn DJ, Liao F, Medrano EE . Activation of a cAMP pathway and induction of melanogenesis correlate with association of p16(INK4) and p27(KIP1) to CDKs, loss of E2F-binding activity, and premature senescence of human melanocytes Exp Cell Res 1999 253: 561–572

    Article  CAS  PubMed  Google Scholar 

  89. Bandyopadhyay D, Medrano EE . Melanin accumulation accelerates melanocyte senescence by a mechanism involving p16INK4a/CDK4/pRB and E2F1 Ann NY Acad Sci 2000 908: 71–84

    Article  CAS  PubMed  Google Scholar 

  90. Lee G, Park BS, Han SE, Oh JE, You YO, Baek JH, Kim GS, Min BM . Concurrence of replicative senescence and elevated expression of p16(INK4A) with subculture-induced but not calcium-induced differentiation in normal human oral keratinocytes Arch Oral Biol 2000 45: 809–818

    Article  CAS  PubMed  Google Scholar 

  91. Birnie GD . The HL60 cell line: a model system for studying human myeloid cell differentiation Br J Cancer 1988 9 (Suppl.): 41–45

    Google Scholar 

  92. Chou S, Kaneko M, Nakaya K, Nakamura Y . Induction of differentiation of human and mouse myeloid leukemia cells by camptothecin Biochem Biophys Res Commun 1990 166: 160–167

    Article  CAS  PubMed  Google Scholar 

  93. Cellier MF, Taimi M, Chateau MT, Cannat A, Marti J . Thermal stress as an inducer of differentiation of U937 cells Leuk Res 1993 17: 649–656

    Article  CAS  PubMed  Google Scholar 

  94. Stendahl O, Andersson T, Dahlgren C, Magnusson KE . Defective chemiluminescence response in differentiated HL60 cells due to impaired degranulation Biochim Biophys Acta 1986 881: 430–436

    Article  CAS  PubMed  Google Scholar 

  95. Khanna-Gupta A, Kolibaba K, Zibello TA, Berliner N . NB4 cells show bilineage potential and an aberrant pattern of neutrophil secondary granule protein gene expression Blood 1994 84: 294–302

    Article  CAS  PubMed  Google Scholar 

  96. Kurata N, Akiyama H, Taniyama T, Marunouchi T . Dose-dependent regulation of macrophage differentiation by mos mRNA in a human monocytic cell line EMBO J 1989 8: 457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Maher J, Baker D, Dibb N, Roberts I . Mutant ras promotes haemopoietic cell proliferation or differentiation in a cell-specific manner Leukemia 1996 10: 83–90

    CAS  PubMed  Google Scholar 

  98. Whelan RD, Kiley SC, Parker PJ . Tetradecanoyl phorbol acetate-induced microtubule reorganization is required for sustained mitogen-activated protein kinase activation and morphological differentiation of U937 cells Cell Growth Differ 1999 10: 271–277

    CAS  PubMed  Google Scholar 

  99. Lund LR, Georg B, Nielsen LS, Mayer M, Dano K, Andreasen PA . Plasminogen activator inhibitor type 1: cell-specific and differentiation-induced expression and regulation in human cell lines, as determined by enzyme-linked immunosorbent assay Mol Cell Endocrinol 1988 60: 43–53

    Article  CAS  PubMed  Google Scholar 

  100. Chylicki K, Ehinger M, Svedberg H, Gullberg U . Characterization of the molecular mechanisms for p53-mediated differentiation Cell Growth Differ 2000 11: 561–571

    CAS  PubMed  Google Scholar 

  101. Banerjee D, Lenz HJ, Schnieders B, Manno DJ, Ju JF, Spears CP, Hochhauser D, Danenberg K, Danenberg P, Bertino JR . Transfection of wild-type but not mutant p53 induces early monocytic differentiation in HL60 cells and increases their sensitivity to stress Cell Growth Differ 1995 6: 1405–1413

    CAS  PubMed  Google Scholar 

  102. Duhrsen U, Hossfeld DK . Stromal abnormalities in neoplastic bone marrow diseases Ann Hematol 1996 73: 53–70

    Article  CAS  PubMed  Google Scholar 

  103. Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, Tlsty TD . Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes Nature 2001 409: 633–637

    Article  CAS  PubMed  Google Scholar 

  104. Zimonjic DB, Pollock JL, Westervelt P, Popescu NC, Ley TJ . Acquired, nonrandom chromosomal abnormalities associated with the development of acute promyelocytic leukemia in transgenic mice Proc Natl Acad Sci USA 2000 97: 13306–13311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guo A, Salomoni P, Luo J, Shih A, Zhong S, Gu W, Paolo Pandolfi P . The function of PML in p53-dependent apoptosis Nat Cell Biol 2000 2: 730–736

    Article  CAS  PubMed  Google Scholar 

  106. Khan MM, Nomura T, Kim H, Kaul SC, Wadhwa R, Zhong S, Pandolfi PP, Ishii S . PML-RARalpha alleviates the transcriptional repression mediated by tumor suppressor Rb J Biol Chem 2001 276: 43491–43494

    Article  CAS  PubMed  Google Scholar 

  107. Seewaldt VL, Kim JH, Caldwell LE, Johnson BS, Swisshelm K, Collins SJ . All-trans retinoic acid mediates G1 arrest but not apoptosis of normal human mammary epithelial cells Cell Growth Differ 1997 8: 631–641

    CAS  PubMed  Google Scholar 

  108. Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K, Roninson IB . A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents Cancer Res 1999 59: 3761–3767

    CAS  PubMed  Google Scholar 

  109. Wainwright LJ, Lasorella A, Iavarone A . Distinct mechanisms of cell cycle arrest control the decision between differentiation and senescence in human neuroblastoma cells Proc Natl Acad Sci USA 2001 98: 9396–9400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Murata M, Kawanishi S . Oxidative DNA damage by vitamin A and its derivative via superoxide generation J Biol Chem 2000 275: 2003–2008

    Article  CAS  PubMed  Google Scholar 

  111. Serrano M, Blasco MA . Putting the stress on senescence Curr Opin Cell Biol 2001 13: 748–753

    Article  CAS  PubMed  Google Scholar 

  112. Pendino F, Flexor M, Delhommeau F, Buet D, Lanotte M, Segal-Bendirdjian E . Retinoids down-regulate telomerase and telomere length in a pathway distinct from leukemia cell differentiation Proc Natl Acad Sci USA 2001 98: 6662–6667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chelbi-Alix MK, Pelicano L . Retinoic acid and interferon signaling cross talk in normal and RA-resistant APL cells Leukemia 1999 13: 1167–1174

    Article  CAS  PubMed  Google Scholar 

  114. Pelicano L, Li F, Schindler C, Chelbi-Alix MK . Retinoic acid enhances the expression of interferon-induced proteins: evidence for multiple mechanisms of action Oncogene 1997 15: 2349–2359

    Article  CAS  PubMed  Google Scholar 

  115. Pelicano L, Brumpt C, Pitha PM, Chelbi-Alix MK . Retinoic acid resistance in NB4 APL cells is associated with lack of interferon alpha synthesis Stat1 and p48 induction Oncogene 1999 18: 3944–3953

    Article  CAS  PubMed  Google Scholar 

  116. Gutch MJ, Reich NC . Repression of the interferon signal transduction pathway by the adenovirus E1A oncogene Proc Natl Acad Sci USA 1991 88: 7913–7917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bhattacharya S, Eckner R, Grossman S, Oldread E, Arany Z, D'Andrea A, Livingston DM . Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha Nature 1996 383: 344–347

    Article  CAS  PubMed  Google Scholar 

  118. Miyauchi J, Ohyashiki K, Inatomi Y, Toyama K . Neutrophil secondary-granule deficiency as a hallmark of all-trans retinoic acid-induced differentiation of acute promyelocytic leukemia cells Blood 1997 90: 803–813

    Article  CAS  PubMed  Google Scholar 

  119. Duprez E, Tong JH, Derre J, Chen SJ, Berger R, Chen Z, Lanotte M . JEM-1, a novel gene encoding a leucine-zipper nuclear factor upregulated during retinoid-induced maturation of NB4 promyelocytic leukaemia Oncogene 1997 14: 1563–1570

    Article  CAS  PubMed  Google Scholar 

  120. Schmitz N, Dreger P, Suttorp M, Rohwedder EB, Haferlach T, Loffler H, Hunter A, Russell NH . Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by filgrastim (granulocyte colony-stimulating factor) Blood 1995 85: 1666–1672

    Article  CAS  PubMed  Google Scholar 

  121. Ogura M, Kagami Y, Suzuki R, Miura K, Uehira K, Kurokawa T, Ito T, Kinoshita T, Emi N, Morishima Y, Kodera Y, Ueda R . Phase I/II trial of cure-oriented high-dose chemoradiotherapy with transplantation of CD34+ peripheral blood stem cells purified by the immunomagnetic bead method for refractory hematological malignancies. Nagoya CD34+ PBSCT Study Group Cancer Chemother Pharmacol 1997 40 (Suppl.): S51–S57

    Article  Google Scholar 

  122. Guidez F, Ivins S, Zhu J, Soderstrom M, Waxman S, Zelent A . Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARalpha underlie molecular pathogenesis and treatment of acute promyelocytic leukemia Blood 1998 91: 2634–2642

    Article  CAS  PubMed  Google Scholar 

  123. Prives C, Manley JL . Why is p53 acetylated? Cell 2001 107: 815–818

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

GF is a fellow of the Canadian Institute of Health and Research. I thank Drs Clemens Schmitt and Ari Melnick for valuable comments on this manuscript and V Bourdeau for help with the figures. The ideas presented in this review were motivated in the excellent scientific environment of the laboratory of Scott Lowe at Cold Spring Harbor. I thank Dr Lowe and the members of his laboratory for discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferbeyre, G. PML a target of translocations in APL is a regulator of cellular senescence. Leukemia 16, 1918–1926 (2002). https://doi.org/10.1038/sj.leu.2402722

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402722

Keywords

This article is cited by

Search

Quick links