Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Exposure to low concentrations of etoposide reduces the apoptotic capability of leukaemic cell lines

Abstract

The use of topoisomerase inhibitors has been associated with the development of secondary malignancies, suggesting that these agents can induce DNA damage that may be persistent. We have investigated the effect of short exposures (>3 days) to low etoposide concentrations (LC-etoposide, 0.01–0.04 μM) on the ability of leukaemic cells to initiate apoptosis. Results showed that although LC-etoposide had no effect on cell growth characteristics, the pre-culture of cells with LC-etoposide conferred resistance to subsequent exposure to cytotoxic concentrations of etoposide (0.3 μM etoposide in HL60 on day 3: %V: 95.2 ± 1.6% vs 60.3 ± 12.1% in control cells with no pre-culture, and %A: 5.1 ± 0.2 vs 19.0 ± 0.7%; P < 0.001). This effect was still observed 4 weeks after the initial drug exposure. Associated with these observations was a three-fold increase in genetic instability and a reduction in induced bax protein levels. The anti-cytotoxic effect was also shown to be specific to topoisomerase II (topo II) inhibitors, as the pre-culture of cells with a low doxorubicin concentration also induced resistance, while low cisplatin concentrations did not. The persistence of these alterations in cellular processes following an initial exposure to topo II inhibitors suggests a DNA-based mechanism, and highlights the existence of drug/target interactions even at very low drug concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Clark PI, Slevin ML . The clinical pharmacology of etoposide and teniposide Clin Pharmacokinet 1987 v 12: 223–252

    Article  Google Scholar 

  2. Slevin ML, Clark PI, Joel SP, Malik S, Osborne RJ, Gregory WM, Lowe DG, Reznek RH, Wrigley PF . A randomised trial to evaluate the effect of schedule on the activity of etoposide in small cell lung cancer J Clin Oncol 1989 7: 1333–1340

    Article  CAS  PubMed  Google Scholar 

  3. Pui CH, Ribeiro RC, Hancock ML, Rivera GK, Evans WE, Raimondi SC, Head DR, Behm FG, Mahmoud MH, Sandlund JT . Acute myeloid leukaemia in children treated with epipodophyllotoxins for acute lymphocytic leukaemia N Engl J Med 1991 325: 1682–1687

    Article  CAS  PubMed  Google Scholar 

  4. Winick NJ, McKenna RW, Shuster JJ, Schneider NR, Borowitz MJ, Bowman WP, Jacaruso D, Kamen BA, Buchanan GR . Secondary acute myeloid leukaemia in children with acute lymphoblastic leukaemia treated with etoposide J Clin Oncol 1993 11: 209–217

    Article  CAS  PubMed  Google Scholar 

  5. Smith MA, Rubinstein L, Ungerleider RS . Therapy-related acute myeloid leukaemia following treatment with epipodophyllotoxins: estimating the risks Med Pediatr Oncol 1994 23: 86–98

    Article  CAS  PubMed  Google Scholar 

  6. Smith MA, Rubinstein L, Anderson JR, Arthur D, Catalano PJ, Freidlin B, Heyn R, Khayat A, Krailo M, Land VJ, Miser J, Shuster J, Vena D . Secondary leukaemia or myelodysplatic syndrome after treatment with epipodophyllotoxins J Clin Oncol 1999 17: 569–577

    Article  CAS  PubMed  Google Scholar 

  7. Stine KC, Saylors RL, Sawyer JR, Becton DL . Secondary acute myelogenous leukaemia following safe exposure to etoposide J Clin Oncol 1997 15: 1583–1586

    Article  CAS  PubMed  Google Scholar 

  8. Wang JC . DNA topoisomerases Annu Rev Biochem 1985 54: 665–697

    Article  CAS  PubMed  Google Scholar 

  9. Zwelling LA . DNA topoisomerase II as a target of antineoplastic drug therapy Cancer Metastasis Rev 1985 4: 263–276

    Article  CAS  PubMed  Google Scholar 

  10. Berger NA, Chatterjee S, Schmotzer JA, Helms SR . Etoposide (VP-16–213)-induced gene alterations: potential contribution to cell death Proc Natl Acad Sci USA 1991 88: 8740–8743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han YH, Austin MJ, Pommier Y, Povirk LF . Small deletions and insertion mutations induced by topoisomerase II inhibitor teniposide in CHO cells and comparison with sites of drug-stimulated DNA cleavage in vitro J Mol Biol 1993 220: 52–66

    Article  Google Scholar 

  12. Liu WM, Bamford C, Slevin M, Joel SP . Effects of haemopoietic growth factors in combination with etoposide on sister chromatid exchange frequencies in peripheral blood mononuclear cells Cancer Chemother Pharmacol 1998 41: 343–346

    Article  CAS  PubMed  Google Scholar 

  13. Chatterjee S, Trivedi D, Petzold SJ, Berger NA . Mechanism of epipodophyllotoxin-induced cell death in poly(adenosine diphosphate-ribose) synthesis-deficient V79 Chinese hamster cell lines Cancer Res 1990 50: 2713–2718

    CAS  PubMed  Google Scholar 

  14. Maraschin J, Dutrillaux, Aurias A . Chromosome aberrations induced by etoposide (VP-16) are not random Int J Cancer 1990 46: 808–812

    Article  CAS  PubMed  Google Scholar 

  15. Gromova II, Thomsen B, Razin SV . Different topoisomerase II antitumour drugs direct similar specific long-range fragmentation of an amplified c-MYC gene locus in living cells and in high-salt-extracted nuclei Proc Natl Acad Sci USA 1995 92: 102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tkachuk DC, Kohler S, Cleary ML . Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukaemias Cell 1992 71: 691–700

    Article  CAS  PubMed  Google Scholar 

  17. Ridge SA, Wiedemann LM . Chromosome 11q23 abnormalities in leukaemia Leuk Lymphoma 1994 14: 11–17

    Article  CAS  PubMed  Google Scholar 

  18. Joel SP . The clinical pharmacology of etoposide: an update Cancer Treat Rev 1996 22: 179–221

    Article  CAS  PubMed  Google Scholar 

  19. Liu WM, Lawrence AJ, Joel SP . The importance of drug scheduling and recovery phases in determining drug activity: improving etoposide efficacy in BCR-ABL-positive CML cells Eur J Cancer 2002 38: 842–850

    Article  CAS  PubMed  Google Scholar 

  20. Darzynkiewicz Z, Li X, Gong J . Assays of cell viability: discrimination of cells dying by apoptosis Methods Cell Biol 1994 41: 15–38

    Article  CAS  PubMed  Google Scholar 

  21. Mitelman F . ISCN An International System for Human Cytogenetic Nomenclature S Karger: Basel 1995

  22. Klein I, Sarkadi B, Varadi A . An inventory of the human ABC proteins Biochim Biophys Acta 1999 1461: 237–262

    Article  CAS  PubMed  Google Scholar 

  23. Hamilton KO, Topp E, Makagiansar I, Siahaan T, Yazdanian M, Audus KL . Multidrug resistance-associated protein-1 functional activity in Calu-3 cells J Pharmacol Exp Ther 2001 298: 1199–1205

    CAS  PubMed  Google Scholar 

  24. Pavillard V, Kherfellah D, Richard S, Robert J, Montaudon D . Effects of the combination of camptothecin and doxorubicin or etoposide on rat glioma cells and camptothecin-resistant variants Br J Cancer 2001 85: 1077–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. de Jong S, Zijlstra JG, De Vries EG, Mulder NH . Reduced DNA topoisomerase II activity and drug-induced DNA cleavage activity in an adriamycin-resistant human small cell lung carcinoma cell line Cancer Res 1990 50: 304–309

    CAS  PubMed  Google Scholar 

  26. Zijlstra JG, De Vries EG, Mulder NH . Multifactorial drug resistance in an adriamycin-resistant human small cell lung carcinoma cell line Cancer Res 1987 47: 1780–1784

    CAS  PubMed  Google Scholar 

  27. Liliemark EK, Liliemark J, Pettersson B, Gruber A, Bjorkholm M, Peterson C . In vivo accumulation of etoposide in peripheral leukaemic cells in patients treated for acute myeloblastic leukaemia; relation to plasma concentration and protein binding Leuk Lymphoma 1993 10: 323–328

    Article  CAS  PubMed  Google Scholar 

  28. Zhou R, Frostvik-Stolt M, Liliemark E . Determination of etoposide in human plasma and leukemic cells by high-performance liquid chromatography with electrochemical detection J Chromatogr B Biomed Sci Appl 2001 757: 135–141

    Article  CAS  PubMed  Google Scholar 

  29. Dubrez L, Goldwasser F, Genne P, Pommier Y, Solary E . The role of cell cycle regulation and apoptosis triggering in determining the sensitivity of leukaemic cells to topoisomerase I and II inhibitors Leukemia 1995 9: 1013–1024

    CAS  PubMed  Google Scholar 

  30. Jia L, Patwari Y, Srinivasula SM, Newland AC, Fernandes-Alnemri T, Alnemri ES, Kelsey SM . Bax translocation is crucial for the sensitivity of leukaemic cells to etoposide-induced apoptosis Oncogene 2001 20: 4817–4826

    Article  CAS  PubMed  Google Scholar 

  31. Oltvai ZN, Milliman CL, Korsmeyer SJ . Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death Cell 1993 74: 609–619

    Article  CAS  PubMed  Google Scholar 

  32. Reed JC . Double identity for proteins of the bcl-2 family Nature 1997 387: 773–776

    Article  CAS  PubMed  Google Scholar 

  33. Kondo S, Barna BP, Kondo Y, Tanaka Y, Casey G, Liu J, Morimura T, Kaakaji R, Peterson JW, Werbel B, Barnett GH . WAF1/CIP1 increases the susceptibility of p53 non-functional malignant glioma cells to cisplatin-induced apoptosis Oncogene 1996 13: 1279–1285

    CAS  PubMed  Google Scholar 

  34. Burger H, Nooter K, Boersma AW, Kortland CJ, Stoter G . Lack of correlation between cisplatin-induced apoptosis, p53 status and expression of bcl-2 family proteins in testicular germ cell tumour cell lines Int J Cancer 1997 73: 592–599

    Article  CAS  PubMed  Google Scholar 

  35. Wang GQ, Gastman BR, Wieckowski E, Goldstein LA, Gambotto A, Kim TH, Fang B, Rabinovitz A, Yin XM, Rabinowich H . A role for mitochondrial Bak in apoptotic response to anticancer drugs J Biol Chem 2001 276: 34307–34317

    Article  CAS  PubMed  Google Scholar 

  36. Pinto AL, Lippard SJ . Binding of the antitumor drug cisdiamminedichloro-platinum (cisplatin) to DNA Biochim Biophys Acta 1985 780: 167–180

    CAS  PubMed  Google Scholar 

  37. Sumner AT, de la Torre J, Stuppia L . The distribution of genes on chromosomes: a cytological approach J Mol Evol 1993 37: 117–122

    Article  CAS  PubMed  Google Scholar 

  38. Felix CA . Secondary leukaemias induced by topoisomerase-targeted drugs Biochim Biophys Acta 1998 1400: 233–255

    Article  CAS  PubMed  Google Scholar 

  39. Felix CA . Leukemias related to treatment with DNA topoisomerase II inhibitors Med Pediatr Oncol 2001 36: 525–535

    Article  CAS  PubMed  Google Scholar 

  40. Melixetian MB, Beryozkina EV, Pavlenko MA, Grinchuk TM . Altered expression of DNA-topoisomerase IIa is associated with increased rate of spontaneous polyplodisation in etoposide resistant K562 cells Leuk Res 2000 24: 831–837

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Margaret Burridge and Deborah Lillington for assistance with analysing and interpreting the cytogenetic results.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Oakley, P. & Joel, S. Exposure to low concentrations of etoposide reduces the apoptotic capability of leukaemic cell lines. Leukemia 16, 1705–1712 (2002). https://doi.org/10.1038/sj.leu.2402621

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402621

Keywords

This article is cited by

Search

Quick links