Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Potential involvement of the AML1-MTG8 fusion protein in the granulocytic maturation characteristic of the t(8;21) acute myelogenous leukemia revealed by microarray analysis

Abstract

The AML1 (RUNX1)-MTG8 (ETO) fusion transcription factor generated by the t(8;21) translocation is believed to deregulate the expression of genes that are crucial for normal differentiation and proliferation of hematopoietic progenitors, resulting in acute myelogenous leukemia. To elucidate the role of AML1-MTG8 in leukemogenesis, we used oligonucleotide microarrays to detect alterations in gene expression caused by ectopic expression of AML1-MTG8 in a murine myeloid progenitor cell line, L-G. Microarray analysis of approximately 6500 genes identified 32 candidate genes under the downstream control of AML1-MTG8. Among the 32 genes, 23 were not known to be regulated by AML1-MTG8. These included many granule protein genes and several cell surface antigen genes. Interestingly, AML1-MTG8 enhanced the expression of several genes that are usually induced during granulocytic differentiation, particularly those encoding azurophil granule proteins, including cathepsin G, myeloperoxidase and lysozyme. This indicates that AML1-MTG8 induces partial differentiation of myeloid progenitor cells into promyelocytes in the absence of the usual differentiation signals, while it inhibits terminal differentiation into mature granulocytes. Thus, AML1-MTG8 itself may play a crucial role in defining a unique cytologic type with abnormal maturation, characteristic of t(8;21) acute myelogenous leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rabbitts TH . Chromosomal translocations in human cancer Nature 1994 372: 143–149

    Article  CAS  PubMed  Google Scholar 

  2. Look AT . Oncogenic transcription factors in human acute leukemia Science 1997 278: 1059–1064

    Article  CAS  PubMed  Google Scholar 

  3. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C . Proposals for the classification of the acute leukaemias. French–American–British (FAB) co-operative group Br J Haematol 1976 33: 451–458

    Article  CAS  PubMed  Google Scholar 

  4. Bitter MA, Le Beau MM, Rowley JD, Larson RA, Golomb HM, Vardiman JW . Associations between morphology, karyotype, and clinical features in myeloid leukemias Hum Pathol 1987 18: 211–225

    Article  CAS  PubMed  Google Scholar 

  5. Swirsky DM, Li YS, Matthews JG, Flemans RJ, Rees JK, Hayhoe FG . 8;21 translocation in acute granulocytic leukaemia: cytological, cytochemical and clinical features Br J Haematol 1984 56: 199–213

    Article  CAS  PubMed  Google Scholar 

  6. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M . t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1 Proc Natl Acad Sci USA 1991 88: 10431–10434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S, Lasher R, Trujillo J, Rowley J, Drabkin H . Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt Blood 1992 80: 1825–1831

    CAS  PubMed  Google Scholar 

  8. Kozu T, Miyoshi H, Shimizu K, Maseki N, Kaneko Y, Asou H, Kamada N, Ohki M . Junctions of the AML1/MTG8 (ETO) fusion are constant in t(8;21) acute myeloid leukemia detected by reverse transcription polymerase chain reaction Blood 1993 82: 1270–1276

    CAS  PubMed  Google Scholar 

  9. Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y, Kamada N, Ohki M . The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript EMBO J 1993 12: 2715–2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nisson PE, Watkins PC, Sacchi N . Transcriptionally active chimeric gene derived from the fusion of the AML1 gene and a novel gene on chromosome 8 in t(8;21) leukemic cells Cancer Genet Cytogenet 1992 63: 81–88

    Article  CAS  PubMed  Google Scholar 

  11. Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito-Fujimoto M, Ito Y, Shigesada K . Molecular cloning and characterization of PEBP2, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 Virology 1993 194: 314–331

    Article  CAS  PubMed  Google Scholar 

  12. Ogawa E, Maruyama M, Kagoshima H, Inuzuka M, Lu J, Satake M, Shigesada K, Ito Y . PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene Proc Natl Acad Sci USA 1993 90: 6859–6863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang S, Wang Q, Crute BE, Melnikova IN, Keller SR, Speck NA . Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor Mol Cell Biol 1993 13: 3324–3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Daga A, Tighe JE, Calabi F . Leukaemia/Drosophila homology Nature 1992 356: 484

    Article  CAS  PubMed  Google Scholar 

  15. Kagoshima H, Shigesada K, Satake M, Ito Y, Miyoshi H, Ohki M, Pepling M, Gergen P . The Runt domain identifies a new family of heteromeric transcriptional regulators Trends Genet 1993 9: 338–341

    Article  CAS  PubMed  Google Scholar 

  16. Meyers S, Downing JR, Hiebert SW . Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: The runt homology domain is required for DNA binding and protein-protein interactions Mol Cell Biol 1993 13: 6336–6345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Golling G, Li L, Pepling M, Stebbins M, Gergen JP . Drosophila homologs of the proto-oncogene product PEBP2/CBFβ regulate the DNA-binding properties of Runt Mol Cell Biol 1996 16: 932–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kitabayashi I, Yokoyama A, Shimizu K, Ohki M . Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation EMBO J 1998 17: 2994–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nuchprayoon I, Meyers S, Scott LM, Suzow J, Hiebert S, Friedman AD . PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2β/CBFβ proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells Mol Cell Biol 1994 14: 5558–5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Westendorf JJ, Yamamoto CM, Lenny N, Downing JR, Selsted ME, Hiebert SW . The t(8;21) fusion product, AML1/ETO, associates with C/EBPα, inhibits C/EBPα-dependent transcription, and blocks granulocytic differentiation Mol Cell Biol 1998 18: 322–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shoemaker SG, Hromas R, Kaushansky K . Transcriptional regulation of interleukin 3 gene expression in T lymphocytes Proc Natl Acad Sci USA 1990 87: 9650–9654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frank R, Zhang J, Meyers S, Hiebert SW, Nimer SD . The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B Oncogene 1995 11: 2667–2674

    CAS  PubMed  Google Scholar 

  23. Takahashi A, Satake M, Yamaguchi-Iwai Y, Bae SC, Lu J, Maruyama M, Zhang YW, Oka H, Arai N, Arai K . Positive and negative regulation of granulocyte–macrophage colony stimulating factor promoter activity by AML1-related transcription factor, PEBP2 Blood 1995 86: 607–616

    CAS  PubMed  Google Scholar 

  24. Zhang DE, Fujioka K, Hetherington CJ, Shapiro LH, Chen HM, Look AT, Tenen DG . Identification of a region which directs the monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1) Mol Cell Biol 1994 14: 8085–8095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prosser HM, Wotton D, Gegonne A, Ghysdael J, Wang S, Speck NA, Owen MJ . A phorbol ester response element within the human T-cell receptor chain enhancer Proc Natl Acad Sci USA 1992 89: 9934–9938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Redondo JM, Pfohl JL, Hernandez-Munain C, Wang S, Speck NA, Krangel MS . Indistinguishable nuclear factor binding to functional core sites of the T-cell receptor and murine leukemia virus enhancers Mol Cell Biol 1992 12: 4817–4823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Niki M, Okada H, Takano H, Kuno J, Tani K, Hibino H, Asano S, Ito Y, Satake M, Noda T . Hematopoiesis in the fetal liver is impaired by targeted mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor, polyomavirus enhancer binding protein 2/core binding factor Proc Natl Acad Sci USA 1997 94: 5697–5702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis Cell 1996 84: 321–330

    Article  CAS  PubMed  Google Scholar 

  29. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis Proc Natl Acad Sci USA 1996 93: 3444–3449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X, Bushweller JH, Bories JC, Alt FW, Ryan G, Liu PP, Wynshaw-Boris A, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . The CBFβ subunit is essential for CBFα2 (AML1) function in vivo Cell 1996 87: 697–708

    Article  CAS  PubMed  Google Scholar 

  31. Erickson PF, Robinson M, Owens G, Drabkin HA . The ETO protion of acute myeloid leukemia t(8;21) fusion transcript encodes a highly evolutionary conserved, putative transcription factor Cancer Res 1994 54: 1782–1786

    CAS  PubMed  Google Scholar 

  32. Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA . Aberrant recruitment of the nuclear receptor corepressor–histone deacetylase complex by the acute myeloid leukemia fusion partner ETO Mol Cell Biol 1998 18: 7185–7191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lutterbach B, Westendorf JJ, Linggi B, Patten A, Moniwa M, Davie JR, Huynh KD, Bardwell VJ, Lavinsky RM, Rosenfeld MG, Glass C, Seto E, Hiebert SW . ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 Corepressors Mol Cell Biol 1998 18: 7176–7184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM . ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex Proc Natl Acad Sci USA 1998 95: 10860–10865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meyers S, Lenny N, Hiebert SW . The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation Mol Cell Biol 1995 15: 1974–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yergeau DA, Hetherington CJ, Wang Q, Zhang P, Sharpe AH, Binder M, Marin-Padilla M, Tenen DG, Speck NA, Zhang DE . Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene Nat Genet 1997 15: 303–306

    Article  CAS  PubMed  Google Scholar 

  37. Okuda T, Cai Z, Yang S, Lenny N, Lyu CJ, van Deursen JM, Harada H, Downing JR . Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors Blood 1998 91: 3134–3143

    CAS  PubMed  Google Scholar 

  38. Kitabayashi I, Ida K, Morohoshi F, Yokoyama A, Mitsuhashi N, Shimizu K, Nomura N, Hayashi Y, Ohki M . The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8 (ETO/CDR) family, MTGR1 Mol Cell Biol 1998 18: 846–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shimada H, Ichikawa H, Nakamura S, Katsu R, Iwasa M, Kitabayashi I, Ohki M . Analysis of genes under the downstream control of the t(8;21) fusion protein AML1-MTG8: overexpression of the TIS11b (ERF-1, cMG1) gene induces myeloid cell proliferation in response to G-CSF Blood 2000 96: 655–663

    CAS  PubMed  Google Scholar 

  40. Shimizu K, Kitabayashi I, Kamada N, Abe T, Maseki N, Suzukawa K, Ohki M . AML1-MTG8 leukemic protein induces the expression of granulocyte colony-stimulating factor (G-CSF) receptor through the up-regulation of CCAAT/enhancer binding protein epsilon Blood 2000 96: 288–296

    CAS  PubMed  Google Scholar 

  41. Chomczynski P, Sacchi N . Single-Step Method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction Anal Biochem 1987 162: 156–159

    Article  CAS  PubMed  Google Scholar 

  42. Kinashi T, Lee KH, Ogawa M, Tohyama K, Tashiro K, Fukunaga R, Nagata S, Honjo T . Premature expression of the macrophage-colony stimulating factor receptor on a multipotential stem cell line does not alter differentiation lineages controlled by stromal cells used for coculture J Exp Med 1991 173: 1267–1279

    Article  CAS  PubMed  Google Scholar 

  43. Bainton DF, Ullyot JL, Farquhar MG . The development of neutrophilic polymorphonuclear leukocytes in human bone marrow J Exp Med 1971 134: 907–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kjeldsen L, Bainton DF, Sengelov H, Borregaard N . Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils Blood 1994 83: 799–807

    CAS  PubMed  Google Scholar 

  45. Lollike K, Kjeldsen L, Sengelov H, Borregaard N . Lysozyme in human neutrophils and plasma. A parameter of myelopoietic activity Leukemia 1995 9: 159–164

    CAS  PubMed  Google Scholar 

  46. Avalos BR . Molecular analysis of the granulocyte colony-stimulating factor receptor Blood 1996 88: 761–777

    CAS  PubMed  Google Scholar 

  47. Nacken W, Sopalla C, Propper C, Sorg C, Kerkhoff C . Biochemical characterization of the murine S100A9 (MRP14) protein suggests that it is functionally equivalent to its human counterpart despite its low degree of sequence homology Eur J Biochem 2000 267: 560–565

    Article  CAS  PubMed  Google Scholar 

  48. Mardente S, Longo A, Lenti L, De Capua G, Prodinger WM, Silvestri I, Pontieri G, Lipari M . C3 synthesis and CRs expression during differentiation of a murine stem cell line Immunobiology 2000 201: 420–431

    Article  CAS  PubMed  Google Scholar 

  49. Borregaard N, Cowland JB . Granules of the human neutrophilic polymorphonuclear leukocyte Blood 1997 89: 3503–3521

    CAS  PubMed  Google Scholar 

  50. Hurwitz CA, Raimondi SC, Head D, Krance R, Mirro J Jr, Kalwinsky DK, Ayers GD, Behm FG . Distinctive immunophenotypic features of t(8;21)(q22;q22) acute myeloblastic leukemia in children Blood 1992 80: 3182–3188

    CAS  PubMed  Google Scholar 

  51. Ward Y, Gupta S, Jensen P, Wartmann M, Davis RJ, Kelly K . Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1 Nature 1994 367: 651–654

    Article  CAS  PubMed  Google Scholar 

  52. Pegg AE . Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy Cancer Res 1988 48: 759–774

    CAS  PubMed  Google Scholar 

  53. Auvinen M, Paasinen A, Andersson LC, Holtta E . Ornithine decarboxylase activity is critical for cell transformation Nature 1992 360: 355–358

    Article  CAS  PubMed  Google Scholar 

  54. Auvinen M, Laine A, Paasinen-Sohns A, Kangas A, Kangas L, Saksela O, Andersson LC, Holtta E . Human ornithine decarboxylase-overproducing NIH3T3 cells induce rapidly growing, highly vascularized tumors in nude mice Cancer Res 1997 57: 3016–3025

    CAS  PubMed  Google Scholar 

  55. Moshier JA, Dosescu J, Skunca M, Luk GD . Transformation of NIH/3T3 cells by ornithine decarboxylase overexpression Cancer Res 1993 53: 2618–2622

    CAS  PubMed  Google Scholar 

  56. Leytus SP, Loeb KR, Hagen FS, Kurachi K, Davie EW . A novel trypsin-like serine protease (hepsin) with a putative transmembrane domain expressed by human liver and hepatoma cells Biochemistry 1988 27: 1067–1074

    Article  CAS  PubMed  Google Scholar 

  57. Tsuji A, Torres-Rosado A, Arai T, Le Beau MM, Lemons RS, Chou SH, Kurachi K . Hepsin, a cell membrane-associated protease. Characterization, tissue distribution, and gene localization J Biol Chem 1991 266: 16948–16953

    CAS  PubMed  Google Scholar 

  58. Torres-Rosado A, O'Shea KS, Tsuji A, Chou SH, Kurachi K . Hepsin, a putative cell-surface serine protease, is required for mammalian cell growth Proc Natl Acad Sci USA 1993 90: 7181–7185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tanimoto H, Yan Y, Clarke J, Korourian S, Shigemasa K, Parmley TH, Parham GP, O'Brien TJ . Hepsin, a cell surface serine protease identified in hepatoma cells, is overexpressed in ovarian cancer Cancer Res 1997 57: 2884–2887

    CAS  PubMed  Google Scholar 

  60. Yamamoto S . Mammalian lipoxygenases: molecular structures and functions Biochim Biophys Acta 1992 1128: 117–131

    Article  CAS  PubMed  Google Scholar 

  61. Funk CD, Furci L, FitzGerald GA . Molecular cloning, primary structure, and expression of the human platelet/erythroleukemia cell 12-lipoxygenase Proc Natl Acad Sci USA 1990 87: 5638–5642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Funk CD, Keeney DS, Oliw EH, Boeglin WE, Brash AR . Functional expression and cellular localization of a mouse epidermal lipoxygenase J Biol Chem 1996 271: 23338–23344

    Article  CAS  PubMed  Google Scholar 

  63. Izumi T, Hoshiko S, Radmark O, Samuelsson B . Cloning of the cDNA for human 12-lipoxygenase Proc Natl Acad Sci USA 1990 87: 7477–7481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Connolly JM, Rose DP . Enhanced angiogenesis and growth of 12-lipoxygenase gene-transfected MCF-7 human breast cancer cells in athymic nude mice Cancer Lett 1998 132: 107–112

    Article  CAS  PubMed  Google Scholar 

  65. Nie D, Hillman GG, Geddes T, Tang K, Pierson C, Grignon DJ, Honn KV . Platelet-type 12-lipoxygenase in a human prostate carcinoma stimulates angiogenesis and tumor growth Cancer Res 1998 58: 4047–4051

    CAS  PubMed  Google Scholar 

  66. Ford AM, Bennett CA, Healy LE, Towatari M, Greaves MF, Enver T . Regulation of the myeloperoxidase enhancer binding proteins PU.1, CEBPα, -β, and -δ during granulocytic-lineage specification Proc Natl Acad Sci USA 1996 93: 10838–10843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sturrock A, Franklin KF, Hoidal JR . Human proteinase-3 expression is regulated by PU.1 in conjunction with a cytidine-rich element J Biol Chem 1996 271: 32392–32402

    Article  CAS  PubMed  Google Scholar 

  68. Srikanth S, Rado TA . A 30-base pair element is responsible for the myeloid-specific activity of the human neutrophil elastase promoter J Biol Chem 1994 269: 32626–32633

    CAS  PubMed  Google Scholar 

  69. Oelgeschlager M, Nuchprayoon I, Luscher B, Friedman AD . C/EBP, c-Myb, and PU.1 cooperate to regulate the neutrophil elastase promoter Mol Cell Biol 1996 16: 4717–4725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ahne B, Stratling WH . Characterization of a myeloid-specific enhancer of the chicken lysozyme gene. Major role for an Ets transcription factor-binding site J Biol Chem 1994 269: 17794–17801

    CAS  PubMed  Google Scholar 

  71. Smith LT, Hohaus S, Gonzalez DA, Dziennis SE, Tenen DG . PU.1 (Spi-1) and C/EBPα regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells Blood 1996 88: 1234–1247

    CAS  PubMed  Google Scholar 

  72. Tenen DG, Hromas R, Licht JD, Zhang DE . Transcription factors, normal myeloid development, and leukemia Blood 1997 90: 489–519

    CAS  PubMed  Google Scholar 

  73. Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G, Hiddemann W, Zhang DE, Tenen DG . AML1-ETO downregulates the granulocytic differentiation factor C/EBPα in t(8;21) myeloid leukemia Nat Med 2001 7: 444–451

    Article  CAS  PubMed  Google Scholar 

  74. Rhoades KL, Hetherington CJ, Rowley JD, Hiebert SW, Nucifora G, Tenen DG, Zhang DE . Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis Proc Natl Acad Sci USA 1996 93: 11895–11900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Klampfer L, Zhang J, Zelenetz AO, Uchida H, Nimer SD . The AML1/ETO fusion protein activates transcription of BCL-2 Proc Natl Acad Sci USA 1996 93: 14059–14064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lou J, Cao W, Bernardin F, Ayyanathan K, RauscherIII FJ, Friedman AD . Exogenous cdk4 overcomes reduced cdk4 RNA and inhibition of G1 progression in hematopoietic cells expressing a dominant-negative CBF – a model for overcoming inhibition of proliferation by CBF oncoproteins Oncogene 2000 19: 2695–2703

    Article  CAS  PubMed  Google Scholar 

  77. Burel SA, Harakawa N, Zhou L, Pabst T, Tenen DG, Zhang DE . Dichotomy of AML1-ETO functions: growth arrest versus block of differentiation Mol Cell Biol 2001 21: 5577–5590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture; by a Grant-in-Aid for the 2nd Term Comprehensive 10-year Strategy for Cancer Control and a Research Grant on Human Genome and Gene Therapy from the Ministry of Health and Welfare; and by the Program for Promotion of Fundamental Studies in Health Sciences of the Organization for Drug ADR Relief, R&D Promotion, and Product Review of Japan. HS was an Awardee of Research Resident Fellowships from the Foundation for Promotion of Cancer Research in Japan. We thank M Mori and C Hatanaka for technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimada, H., Ichikawa, H. & Ohki, M. Potential involvement of the AML1-MTG8 fusion protein in the granulocytic maturation characteristic of the t(8;21) acute myelogenous leukemia revealed by microarray analysis. Leukemia 16, 874–885 (2002). https://doi.org/10.1038/sj.leu.2402465

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402465

Keywords

This article is cited by

Search

Quick links