Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Lymphoma

Alternative end-joining in follicular lymphomas’ t(14;18) translocation

Abstract

T(14;18) chromosomal translocation is assumed to result from illegitimate rearrangement between the BCL2 proto-oncogene and the IGH locus during the DH to JH joining phase of V(D)J recombination in early B cells. Analysis of the breakpoint junctions suggests that translocation derives from the fusion between normal V(D)J recombination intermediates at the IGH locus and non-V(D)J-mediated broken-ends at the BCL2 locus. So far, BCL2 broken-ends have only been observed fused to coding-ends, raising questions concerning the molecular constraints of the illegitimate joining process. Using a combination of genome walking and long-range PCR assays, we describe in this report that in 4.5% (2/44) of the t(14;18), one of the BCL2 broken-ends is fused to a signal-end. The formation of these JHRSS/BCL2 junctions provides direct evidence that BCL2 broken-ends are capable of joining to both products of V(D)J recombination, suggesting their presence in the RAG-mediated post-cleavage complex. In addition, junctions generated by this alternative end-joining do not involve deletion of the chromosome 14 intervening sequences generally lost in the standard translocation, providing a unique opportunity to investigate the rearrangement status of this region in the translocated IGH allele. In both cases, a DJH rearrangement could be detected 5′ of the JH-RSS/BCL2 junction. These findings, together with the previously reported bias towards the most external DH and JH segments in standard breakpoints, strongly suggest that t(14;18) preferentially occurs during an attempted secondary DH to JH rearrangement. This unusual and restricted window of differentiation opens intriguing questions concerning the etiology of the translocation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Cleary ML, Sklar J . Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18 Proc Natl Acad Sci USA 1985 82: 7439–7443

    Article  CAS  Google Scholar 

  2. Bakhshi A, Wright JJ, Graninger W, Seto M, Owens J, Cossman J, Jensen JP, Goldman P, Korsmeyer SJ . Mechanism of the t(14;18) chromosomal translocation: structural analysis of both derivative 14 and 18 reciprocal partners Proc Natl Acad Sci USA 1987 84: 2396–2400

    Article  CAS  Google Scholar 

  3. Wyatt RT, Rudders RA, Zelenetz A, Delellis RA, Krontiris TG . BCL2 oncogene translocations is mediated by a chi-like consensus J Exp Med 1992 175: 1575–1588

    Article  CAS  Google Scholar 

  4. Jaeger U, Boecskoer S, Le T, Mitterbauer G, Bolz I, Chott A, Kneba M, Mannhalter C, Nadel B . Follicular lymphomas'BCL2/IGH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation Blood 2000 95: 3520–3529

    Google Scholar 

  5. Tsujimoto Y, Louie E, Bashir MM, Croce CM . The reciprocal partners of both the t(14;18) and the t(11;14) translocations involved in B-cell neoplasms are rearranged by the same mechanism Oncogene 1988 2: 347–351

    CAS  PubMed  Google Scholar 

  6. Cotter F, Price C, Zucca E, Young BD . Direct sequence analysis of the 14q+ and 18q− chromosome junctions in follicular lymphoma Blood 1990 76: 131–135

    CAS  PubMed  Google Scholar 

  7. Yamada M, Wasserman R, Reichard BA, Shane S, Caton AJ, Rovera G . Preferential utilization of specific immunoglobulin heavy chain diversity and joining segments in adult human peripheral blood B lymphocytes J Exp Med 1991 173: 395–407

    Article  CAS  Google Scholar 

  8. Sanz I . Multiple mechanisms participate in the generation of diversity of human H chain CDR3 regions J Immunol 1991 147: 1720–1729

    CAS  PubMed  Google Scholar 

  9. Milili M, Schiff C, Fougereau M, Tonnelle C . The VDJ repertoire expressed in human preB cells reflects the selection of bona fide heavy chains Eur J Immunol 1996 26: 63–69

    Article  CAS  Google Scholar 

  10. Corbett SJ, Tomlinson IM, Sonnhammer ELL, Buck D, Winter G . Sequence of the human immunoglobulin diversity (D) segment locus: a systematic analysis provides no evidence for the use of DIR segments, inverted D segments, ‘minor’ D segments or D–D recombination J Mol Biol 1997 270: 587–597

    Article  CAS  Google Scholar 

  11. Buchonnet G, Lenain P, Ruminy P, Lepretre S, Stamatoullas A, Parmentier F, Jardin F, Duval C, Tilly H, Bastard C . Characterisation of BCL2-JH rearrangements in follicular lymphoma: PCR detection of 3′ BCL2 breakpoints and evidence of a new cluster Leukemia 2000 14: 1563–1569

    Article  CAS  Google Scholar 

  12. Lewis S, Gifford A, Baltimore D . DNA elements are asymmetrically joined during the site-specific recombination of kappa immunoglobulin genes Science 1985 228: 677–685

    Article  CAS  Google Scholar 

  13. Zhu C, Bogue MA, Lim DS, Hasty P, Roth DB . Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates Cell 1996 86: 379–389

    Article  CAS  Google Scholar 

  14. Lieber MR, Hesse JE, Mizuuchi K, Gellert M . Lymphoid V(D)J recombination: nucleotide insertion at signal joints as well as coding joints Proc Natl Acad Sci USA 1988 85: 8588–8592

    Article  CAS  Google Scholar 

  15. Tycko B, Coyle H, Sklar J . Chimeric gamma-delta signal joints. Implications for the mechanism and regulation of T cell receptor gene rearrangement J Immunol 1991 147: 705–713

    CAS  PubMed  Google Scholar 

  16. Garcia IS, Kaneko Y, Gonzalez-Sarmiento R, Campbell K, White L, Boehm T, Rabbitts TH . A study of chromosome 11p13 translocations involving TCR beta and TCR delta in human T cell leukaemia Oncogene 1991 6: 577–582

    CAS  PubMed  Google Scholar 

  17. Tycko B, Reynolds TC, Smith SD, Sklar J . Consistent breakage between consensus recombinase heptamers of chromosome 9 DNA in a recurrent chromosomal translocation of human T cell leukemia J Exp Med 1989 169: 369–377

    Article  CAS  Google Scholar 

  18. Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG . The RAG proteins and V(D)J recombination: complexes, ends, and transposition Annu Rev Immunol 2000 18: 495–527

    Article  CAS  Google Scholar 

  19. Lewis SM, Hesse JE, Mizuuchi K, Gellert M . Novel strand exchanges in V(D)J recombination Cell 1988 55: 1099–1107

    Article  CAS  Google Scholar 

  20. Lewis SM, Hesse JE . Cutting and closing without recombination in V(D)J joining EMBO J 1991 10: 3631–3639

    Article  CAS  Google Scholar 

  21. Schatz DG . Developing B-cell theories Nature 1999 400: 614–615, 617

    Article  CAS  Google Scholar 

  22. Nemazee D . Receptor editing in B cells Adv Immunol 2000 74: 89–126

    Article  CAS  Google Scholar 

  23. Nagaoka H, Yu W, Nussenzweig MC . Regulation of RAG expression in developing lymphocytes Curr Opin Immunol 2000 12: 187–190

    Article  CAS  Google Scholar 

  24. Taki S, Schwenk F, Rajewsky K . Rearrangement of upstream DH and VH genes to a rearranged immunoglobulin variable region gene inserted into the DQ52-JH region of the immunoglobulin heavy chain locus Eur J Immunol 1995 25: 1888–1896

    Article  CAS  Google Scholar 

  25. Papavasiliou F, Casellas R, Suh H, Qin XF, Besmer E, Pelanda R, Nemazee D, Rajewsky K, Nussenzweig MC . V(D)J recombination in mature B cells: a mechanism for altering antibody responses Science 1997 278: 298–301

    Article  CAS  Google Scholar 

  26. Sleckman BP, Gorman JR, Alt FW . Accessibility control of antigen-receptor variable-region gene assembly: role of cis-acting elements Annu Rev Immunol 1996 14: 459–481

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Ann J Feeney and Susanna M Lewis for comments on the manuscript. This work was supported by a grant for the Interdisciplinary Cooperation Project (ICP) from the University of Vienna, and a grant from the Fonds zur Foerderung der Wissenschaftlichen Forschung (FWF P-13984GEN).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marculescu, R., Le, T., Böcskör, S. et al. Alternative end-joining in follicular lymphomas’ t(14;18) translocation. Leukemia 16, 120–126 (2002). https://doi.org/10.1038/sj.leu.2402324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402324

Keywords

Search

Quick links