Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Stromal support augments extended long-term ex vivo expansion of hemopoietic progenitor cells

Abstract

Current technology to numerically expand hemopoietic stem/progenitor cells (HSPC) ex vivo within 1 to 2 weeks is insufficient to warrant significant gain in reconstitution time following their transplantation. In order to more stringently test the parameters affecting HSPC expansion, we followed ex vivo cultures of CD34+-selected umbilical cord blood (UCB) HSPC for up to 10 weeks and investigated the effects of stromal support and cytokine addition. The cytokine combinations included FL + TPO, FL + TPO plus SCF and/or IL6, or SCF + IL6. To identify the HSPC in uncultured and cultured material, we determined the number of colony-forming cells (CFC), cobblestone area forming cells (CAFC), the NOD/SCID repopulating ability (SRA), and CD34+ subsets by phenotyping. The highest fold-increase obtained for CD34+ and CD34+CD38 cell numbers was, respectively, 1197 and 30 937 for stroma-free and 4066 and 117 235 for stroma-supported cultures. In general, CFC generation increased weekly in FL + TPO containing groups up to week 5 with a 28- to 195-fold expansion whereafter the weekly CFC output stabilized. Stroma support enhanced the expansion of CAFC week 6 maximally 11-fold to 89-fold with FL + TPO + IL6. Cultures stimulated with at least FL + TPO gave an estimated 10- to 14-fold expansion of the ability of CD34+ UCB cells to multilineage engraft the BM of sublethally irradiated NOD/SCID mice at 2 weeks of stroma-free and stroma-supported cultures, while at week 5 and later the estimated SRA decreased to low or undetectable levels in all groups. Our results show that stroma and FL + TPO but also inclusion of bovine serum albumin, greatly increase the long-term generation of HSPC as measured by in vitro assays and is indispensable for long-term expansion of CD34+CD38CXCR4+ cells. However, the different surrogate methods to quantify the HSPC (CD34+CD38, CFC, CAFC week 6 and SRA) show increasing incongruency with increasing culture time, while especially the phenotypic analysis and the CFC generation greatly overestimate the CAFC and SRA expansion in 10-week cultures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Koller MR, Emerson SG, Palsson BO . Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures Blood 1993 82: 378–384

    CAS  PubMed  Google Scholar 

  2. Zandstra PW, Eaves CJ, Piret JM . Expansion of hematopoietic progenitor cell populations in stirred suspension bioreactors of normal human bone marrow cells Biotechnology 1994 12: 909–914

    CAS  PubMed  Google Scholar 

  3. Yonemura Y, Ku H, Lyman SD, Ogawa M . In vitro expansion of hematopoietic progenitors and maintenance of stem cells: comparison between FLT3/FLK-2 ligand and KIT ligand Blood 1997 89: 1915–1921

    CAS  PubMed  Google Scholar 

  4. Kawada H, Ando K, Tsuji T, Shimakura Y, Nakamura Y, Chargui J, Hagihara M, Itagaki H, Shimizu T, Inokuchi S, Kato S, Hotta T . Rapid ex vivo expansion of human umbilical cord hematopoietic progenitors using a novel culture system Exp Hematol 1999 27: 904–915

    Article  CAS  PubMed  Google Scholar 

  5. Shih CC, Hu MC, Hu J, Medeiros J, Forman SJ . Long-term ex vivo maintenance and expansion of transplantable human hematopoietic stem cells Blood 1999 94: 1623–1636

    CAS  PubMed  Google Scholar 

  6. Verfaillie CM . Soluble factor(s) produced by human bone marrow stroma increase cytokine-induced proliferation and maturation of primitive hematopoietic progenitors while preventing their terminal differentiation Blood 1993 82: 2045–2053

    CAS  PubMed  Google Scholar 

  7. Wineman J, Moore K, Lemischka I, Muller-Sieburg C . Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells Blood 1996 87: 4082–4090

    CAS  PubMed  Google Scholar 

  8. Kobayashi M, Laver JH, Kato T, Miyazaki H, Ogawa M . Thrombopoietin supports proliferation of human primitive hematopoietic cells in synergy with steel factor and/or interleukin-3 Blood 1996 88: 429–436

    CAS  PubMed  Google Scholar 

  9. Ku H, Yonemura Y, Kaushansky K, Ogawa M . Thrombopoietin, the ligand for the Mpl receptor, synergizes with steel factor and other early acting cytokines in supporting proliferation of primitive hematopoietic progenitors of mice Blood 1996 87: 4544–4551

    CAS  PubMed  Google Scholar 

  10. Lyman SD, Jacobsen SE . c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities Blood 1998 91: 1101–1134

    CAS  PubMed  Google Scholar 

  11. Ueda T, Tsuji K, Yoshino H, Ebihara Y, Yagasaki H, Hisakawa H, Mitsui T, Manabe A, Tanaka R, Kobayashi K, Ito M, Yasukawa K, Nakahata T . Expansion of human NOD/SCID-repopulating cells by stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6, and soluble IL-6 receptor J Clin Invest 2000 105: 1013–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Punzel M, Moore KA, Lemischka IR, Verfaillie CM . The type of stromal feeder used in limiting dilution assays influences frequency and maintenance assessment of human long-term culture initiating cells Leukemia 1999 13: 92–97

    Article  CAS  PubMed  Google Scholar 

  13. Petzer AL, Hogge DE, Landsdorp PM, Reid DS, Eaves CJ . Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium Proc Natl Acad Sci USA 1996 93: 1470–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gothot A, Pyatt R, McMahel J, Rice S, Srour EF . Assessment of proliferative and colony-forming capacity after successive in vitro divisions of single human CD34+ cells initially isolated in G0 Exp Hematol 1998 26: 562–570

    CAS  PubMed  Google Scholar 

  15. Gan OI, Dorrell C, Pereira DS, Ito CY, Wang JC, Dick JE . Characterization and retroviral transduction of an early human lymphomyeloid precursor assayed in nonswitched long-term culture on murine stroma Exp Hematol 1999 27: 1097–1106

    Article  CAS  PubMed  Google Scholar 

  16. Ramsfjell V, Bryder D, Bjorgvinsdottir H, Kornfalt S, Nilsson L, Borge OJ, Jacobsen SE . Distinct requirements for optimal growth and In vitro expansion of human CD34(+)CD38(−) bone marrow long-term culture-initiating cells (LTC-IC), extended LTC-IC, and murine in vivo long-term reconstituting stem cells Blood 1999 94: 4093–4102

    CAS  PubMed  Google Scholar 

  17. Ando K, Nakamura Y, Chargui J, Matsuzawa H, Tsuji T, Kato S, Hotta T . Extensive generation of human cord blood CD34(+) stem cells from Lin(−)CD34(−) cells in a long-term in vitro system Exp Hematol 2000 28: 690–699

    Article  CAS  PubMed  Google Scholar 

  18. Hao QL, Thiemann FT, Petersen D, Smogorzewska EM, Crooks GM . Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population Blood 1996 88: 3306–3313

    CAS  PubMed  Google Scholar 

  19. Piacibello W, Sanavio F, Garetto L, Severino A, Bergandi D, Ferrario J, Fagioli F, Berger M, Aglietta M . Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood Blood 1997 89: 2644–2653

    CAS  PubMed  Google Scholar 

  20. Piacibello W, Sanavio F, Garetto L, Severino A, Dane A, Gammaitoni L, Aglietta M . Differential growth factor requirement of primitive cord blood hematopoietic stem cell for self-renewal and amplification vs proliferation and differentiation Leukemia 1998 12: 718–727

    Article  CAS  PubMed  Google Scholar 

  21. Piacibello W, Sanavio F, Severino A, Dane A, Gammaitoni L, Fagioli F, Perissinotto E, Cavalloni G, Kollet O, Lapidot T, Aglietta M . Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34(+) cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells Blood 1999 93: 3736–3749

    CAS  PubMed  Google Scholar 

  22. Kusadasi N, van Soest PL, Mayen AE, Koevoet JL, Ploemacher RE . Successful short-term ex vivo expansion of NOD/SCID repopulating ability and CAFC week 6 from umbilical cord blood Leukemia 2000 14: 1944–1953

    Article  CAS  PubMed  Google Scholar 

  23. Rosler E, Brandt J, Chute J, Hoffman R . Cocultivation of umbilical cord blood cells with endothelial cells leads to extensive amplification of competent CD34+CD38− cells Exp Hematol 2000 28: 841–852

    Article  CAS  PubMed  Google Scholar 

  24. Lewis ID, Verfaillie CM . Multi-lineage expansion potential of primitive hematopoietic progenitors. Superiority of umbilical cord blood compared to mobilized peripheral blood Exp Hematol 2000 28: 1087–1095

    Article  CAS  PubMed  Google Scholar 

  25. van der Sluijs JP, van den Bos C, Baert MR, van Beurden CA, Ploemacher RE . Loss of long-term repopulating ability in long-term bone marrow culture Leukemia 1993 7: 725–732

    CAS  PubMed  Google Scholar 

  26. Sitnicka E, Wang QR, Tsai S, Wolf NS . Support versus inhibition of hematopoiesis by two characterized stromal cell types Stem Cells 1995 13: 655–665

    Article  CAS  PubMed  Google Scholar 

  27. Bhatia M, Bonnet D, Kapp U, Wang JC, Murdoch B, Dick JE . Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture J Exp Med 1997 186: 619–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brandt JE, Galy AH, Luens KM, Travis M, Young J, Tong J, Chen S, Davis TA, Lee KP, Chen BP, Tushinski R, Hoffman R . Bone marrow repopulation by human marrow stem cells after long-term expansion culture on a porcine endothelial cell line Exp Hematol 1998 26: 950–961

    CAS  PubMed  Google Scholar 

  29. Yagi M, Ritchie KA, Sitnicka E, Storey C, Roth GJ, Bartelmez S . Sustained ex vivo expansion of hematopoietic stem cells mediated by thrombopoietin Proc Natl Acad Sci USA 1999 96: 8126–8131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ploemacher RE, van der Sluijs JP, Voerman JS, Brons NH . An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse Blood 1989 74: 2755–2763

    CAS  PubMed  Google Scholar 

  31. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T . Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4 Science 1999 283: 845–848

    Article  CAS  PubMed  Google Scholar 

  32. Dexter TM, Moore MA, Sheridan AP . Maintenance of hemopoietic stem cells and production of differentiated progeny in allogeneic and semiallogeneic bone marrow chimeras in vitro J Exp Med 1977 145: 1612–1616

    Article  CAS  PubMed  Google Scholar 

  33. Fraser CC, Kaneshima H, Hansteen G, Kilpatrick M, Hoffman R, Chen BP . Human allogeneic stem cell maintenance and differentiation in a long-term multilineage SCID-hu graft Blood 1995 86: 1680–1693

    CAS  PubMed  Google Scholar 

  34. Gan OI, Murdoch B, Larochelle A, Dick JE . Differential maintenance of primitive human SCID-repopulating cells, clonogenic progenitors, and long-term culture-initiating cells after incubation on human bone marrow stromal cells Blood 1997 90: 641–650

    CAS  PubMed  Google Scholar 

  35. Breems DA, Blokland EA, Ploemacher RE . Stroma-conditioned media improve expansion of human primitive hematopoietic stem cells and progenitor cells Leukemia 1997 11: 142–150

    Article  CAS  PubMed  Google Scholar 

  36. Breems DA, Blokland EA, Siebel KE, Mayen AE, Engels LJ, Ploemacher RE . Stroma-contact prevents loss of hematopoietic stem cell quality during ex vivo expansion of CD34+ mobilized peripheral blood stem cells Blood 1998 91: 111–117

    CAS  PubMed  Google Scholar 

  37. Xu MJ, Tsuji K, Ueda T, Mukouyama YS, Hara T, Yang FC, Ebihara Y, Matsuoka S, Manabe A, Kikuchi A, Ito M, Miyajima A, Nakahata T . Stimulation of mouse and human primitive hematopoiesis by murine embryonic aorta–gonad–mesonephros-derived stromal cell lines Blood 1998 92: 2032–2040

    CAS  PubMed  Google Scholar 

  38. Gupta P, Oegema TR Jr, Brazil JJ, Dudek AZ, Slungaard A, Verfaillie CM . Human LTC-IC can be maintained for at least 5 weeks in vitro when interleukin-3 and a single chemokine are combined with O-sulfated heparan sulfates: requirement for optimal binding interactions of heparan sulfate with early-acting cytokines and matrix proteins Blood 2000 95: 147–155

    CAS  PubMed  Google Scholar 

  39. Shih CC, Hu MC, Hu J, Weng Y, Yazaki PJ, Medeiros J, Forman SJ . A secreted and LIF-mediated stromal cell-derived activity that promotes ex vivo expansion of human hematopoietic stem cells Blood 2000 95: 1957–1966

    CAS  PubMed  Google Scholar 

  40. Tashiro K, Tada H, Heilker R, Shirozu M, Nakano T, Honjo T . Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins Science 1993 261: 600–603

    Article  CAS  PubMed  Google Scholar 

  41. Heesen M, Berman MA, Benson JD, Gerard C, Dorf ME . Cloning of the mouse fusin gene, homologue to a human HIV-1 co-factor J Immunol 1996 157: 5455–5460

    CAS  PubMed  Google Scholar 

  42. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T . Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1 Nature 1996 382: 635–638

    Article  CAS  PubMed  Google Scholar 

  43. Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L . The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1 Blood 1998 91: 4523–4530

    CAS  PubMed  Google Scholar 

  44. Yanai N, Matsui N, Furusawa T, Okubo T, Obinata M . Sphingosine-1-phosphate and lysophosphatidic acid trigger invasion of primitive hematopoietic cells into stromal cell layers Blood 2000 96: 139–144

    CAS  PubMed  Google Scholar 

  45. Borge OJ, Ramsfjell V, Cui L, Jacobsen SE . Ability of early acting cytokines to directly promote survival and suppress apoptosis of human primitive CD34+CD38− bone marrow cells with multilineage potential at the single-cell level: key role of thrombopoietin Blood 1997 90: 2282–2292

    CAS  PubMed  Google Scholar 

  46. Traycoff CM, Orazi A, Ladd AC, Rice S, McMahel J, Srour EF . Proliferation-induced decline of primitive hematopoietic progenitor cell activity is coupled with an increase in apoptosis of ex vivo expanded CD34+ cells Exp Hematol 1998 26: 53–62

    CAS  PubMed  Google Scholar 

  47. Seoh JY, Woo SY, Im SA, Kim YJ, Park HY, Lee S, Lee MA, Yoo ES, Huh JW, Ryu KH, Lee SN, Chung WS, Seong CM . Distinct patterns of apoptosis in association with modulation of CD44 induced by thrombopoietin and granulocyte-colony stimulating factor during ex vivo expansion of human cord blood CD34+ cells Br J Haematol 1999 107: 176–185

    Article  CAS  PubMed  Google Scholar 

  48. Cline MJ, Le Fevre C, Golde DW . Organ interactions in the regulation of hematopoiesis: in vitro interactions of bone, thymus, and spleen with bone marrow stem cells in normal, Sl/Sld and W/Wv mice J Cell Physiol 1977 90: 105–115

    Article  CAS  PubMed  Google Scholar 

  49. Bernstein A, Forrester L, Reith AD, Dubreuil P, Rottapel R . The murine W/c-kit and Steel loci and the control of hematopoiesis Semin Hematol 1991 28: 138–142

    CAS  PubMed  Google Scholar 

  50. Schilz AJ, Brouns G, Knoss H, Ottmann OG, Hoelzer D, Fauser AA, Thrasher AJ, Grez M . High efficiency gene transfer to human hematopoietic SCID-repopulating cells under serum-free conditions Blood 1998 92: 3163–3171

    CAS  PubMed  Google Scholar 

  51. Dorrell C, Gan OI, Pereira DS, Hawley RG, Dick JE . Expansion of human cord blood CD34(+)CD38(−) cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function Blood 2000 95: 102–110

    CAS  PubMed  Google Scholar 

  52. Rosu-Myles M, Gallacher L, Murdoch B, Hess DA, Keeney M, Kelvin D, Dale L, Ferguson SS, Wu D, Fellows F, Bhatia M . The human hematopoietic stem cell compartment is heterogeneous for CXCR4 expression Proc Natl Acad Sci USA 2000 97: 14626–14631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. von Laer D, Corovic A, Vogt B, Fehse B, Roscher S, Rimek A, Baum C, Ostertag W . Loss of CD38 antigen on CD34+CD38+ cells during short-term culture (letter) Leukemia 2000 14: 947–948

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the nursing staff and midwives of the St Fransiscus Gasthuis for collection of UCB samples, and PB van Hennik, WJC Rombouts and I Blokland for technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusadasi, N., Koevoet, J., van Soest, P. et al. Stromal support augments extended long-term ex vivo expansion of hemopoietic progenitor cells. Leukemia 15, 1347–1358 (2001). https://doi.org/10.1038/sj.leu.2402204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402204

Keywords

This article is cited by

Search

Quick links