Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Biology of Mobilized Stem Cells

Sequential analysis of CD34+ and CD34 cell subsets in peripheral blood and leukapheresis products from breast cancer patients mobilized with SCF plus G-CSF and cyclophosphamide

Abstract

Administration of stem cell factor (SCF) has been proven to enhance cytokine-induced mobilization of CD34+ hematopoietic progenitor cells (HPC) into the peripheral blood (PB). The aim of the present study was to explore in a homogeneous group of 22 uniformly treated breast cancer patients: (1) the kinetics of mobilization into PB of both CD34+ and CD34 cell subsets, including dendritic cells, in sequential samples obtained from day +7 up to day +12 after mobilization; and (2) the composition of the CD34+ and CD34 cell subsets present in the two leukapheresis products obtained for each patient. The following CD34+ and CD34 subsets were analyzed: early CD34+ HPC, erythroid-, myeloid- and B-lymphoid-committed CD34+ precursor cells, mature T, B and NK cells, monocytes, neutrophils, eosinophils, basophils, and dendritic cells (DC) including three subsets of lin/HLADR+DC (CD16+, CD33high and CD123high). Our results show that the absolute number of PB CD34+ HPC progressively increases from day +7 onwards. As far as the CD34 PB leukocyte subsets are concerned, monocytes (CD14+) displayed the earliest recovery after mobilization predicting neutrophil recovery 1 day in advance. The number of CD34+ HPC collected in a single leukapheresis product was always 1.4 × 106cells/kg body weight. No significant changes were observed between the two leukapheresis sessions either as regards their composition in CD34+ HPC subsets or their CD34 leukocyte populations except for a higher ratio of both CD34+erythroid/CD34+ myeloid HPC (0.35 ± 0.13 vs 0.30 ± 0.13; P = 0.04) and neutrophils/monocytes (1.58 ± 2.1 vs 0.69 ± 0.27; P = 0.009) found for the first leukapheresis. Interestingly, the overall number of dendritic cells (DC) was higher in the second leukapheresis (1.06 ± 0.56 vs 1.9 ± 0.46; P = 0.02) due to a selective increase of the CD16+ antigen-presenting cells. In summary, our results show that the combination of cyclophosphamide, G-CSF and SCF is highly effective for stem cell mobilization, with differences observed in the mobilization kinetics of the different hematopoietic cell subsets analyzed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bensinger W . Peripheral blood stem cell transplantation Cancer Treat Res 1995 76: 169–193

    Article  CAS  Google Scholar 

  2. Menendez P, Redondo O, Rodriguez A, Lopez-Berges MC, Ercilla G, Lopez A, Duran A, Almeida J, Perez-Simon JA, San Miguel JF, Gratama JW, Orfao A . Comparison between a lyse-and-then-wash method and a lyse-non-wash technique for the enumeration of CD34+ hemopoietic progenitor cells Cytometry 1998 34: 264–271

    Article  CAS  Google Scholar 

  3. Perez-Simon JA, Caballero MD, Corral M, Nieto MJ, Orfao A, Vazquez L, Amigo ML, Berges C, Gonzalez M, Del Canizo C, San Miguel JF . Minimal number of circulating CD34+ cells to ensure successful leukapheresis and engraftment in autologous peripheral blood progenitor cell transplantation Transfusion 1998 38: 385–391

    Article  CAS  Google Scholar 

  4. Ahmed T, Wuest D, Ciavarella D . Peripheral blood stem cell mobilisation by cytokines J Clin Apheresis 1992 7: 129–131

    Article  CAS  Google Scholar 

  5. Shpall EJ . The utilization of cytokines in stem cell mobilisation strategies Bone Marrow Transplant 1999 23: (Suppl. 2) S13–S19

    Article  Google Scholar 

  6. Bensinger W, Appelbaum F, Rowley S, Storb R, Sanders J, Lilleby K, Gooley T, Demirer T, Schiffman K, Weaver C . Factors that influence collection and engraftment of autologous peripheral-blood stem cells J Clin Oncol 1995 13: 2547–2555

    Article  CAS  Google Scholar 

  7. Pettengell R, Morgenstern GR, Woll PJ, Chang J, Rowlands M, Young R, Radford JA, Scarffe JH, Testa NG, Crowther D . Peripheral blood progenitor cell transplantation in lymphoma and leukemia using a single apheresis Blood 1993 82: 3770–3777

    CAS  PubMed  Google Scholar 

  8. Grimaz S, Damiani D, Michieli M, Baccarani M . Mobilisation of peripheral blood progenitor cells with G-CSF alone in lymphoma patients: steady-state circulating progenitor cell count predicts the autograft yield Haematologica 2000 85: 102–103

    CAS  PubMed  Google Scholar 

  9. Ho AD, Young D, Maruyama M, Law P, Corringham RE, Mason JR, Oldham F, Mills B, Terstappen L, Lane TA . Mobilisation and purification of CD34+ cells from normal donors – regimens with G-CSF, GM-CSF, or a combination of both Bone Marrow Transplant 1996 17:: (Suppl. 2) S34–S37

    Google Scholar 

  10. Arbona C, Prosper F, Benet I, Mena F, Solano C, Garcia-Conde J . Comparison between once a day vs twice a day G-CSF for mobilisation of peripheral blood progenitor cells (PBPC) in normal donors for allogeneic PBPC transplantation Bone Marrow Transplant 1998 22: 39–45

    Article  CAS  Google Scholar 

  11. Dreger P, Haferlach T, Eckstein V, Jacobs S, Suttorp M, Loffler H, Muller-Ruchholtz W, Schmitz N . G-CSF-mobilised peripheral blood progenitor cells for allogeneic transplantation: safety, kinetics of mobilisation, and composition of the graft Br J Haematol 1994 87: 609–613

    Article  CAS  Google Scholar 

  12. Watts MJ, Sullivan AM, Leverett D, Peniket AJ, Perry AR, Williams CD, Devereux S, Goldstone AH, Linch DC . Back-up bone marrow is frequently ineffective in patients with poor peripheral-blood stem-cell mobilisation J Clin Oncol 1998 16: 1554–1560

    Article  CAS  Google Scholar 

  13. Weaver CH, Tauer K, Zhen B, Schwartzberg LS, Hazelton B, Weaver Z, Lewkow L, Allen C, Longin K, Buckner CD . Second attempts at mobilisation of peripheral blood stem cells in patients with initial low CD34+ cell yields J Hematother 1998 7: 241–249

    Article  CAS  Google Scholar 

  14. Hassan HT, Zander A . Stem cell factor as a survival and growth factor in human normal and malignant hematopoiesis Acta Haematol 1996 95: 257–262

    Article  CAS  Google Scholar 

  15. Broudy VC . Stem cell factor and hematopoiesis Blood 1997 90: 1345–1364

    CAS  PubMed  Google Scholar 

  16. McNiece IK, Briddell RA, Hartley CA, Andrews RG . The role of stem cell factor in mobilisation of peripheral blood progenitor cells: synergy with G-CSF Stem Cells 1993 11: (Suppl. 3) 83–88

    Article  Google Scholar 

  17. Glaspy JA, Shpall EJ, LeMaistre CF, Briddell RA, Menchaca DM, Turner SA, Lill M, Chap L, Jones R, Wiers MD, Sheridan WP, McNiece IK . Peripheral blood progenitor cell mobilisation using stem cell factor in combination with filgrastim in breast cancer patients Blood 1997 90: 2939–2951

    CAS  PubMed  Google Scholar 

  18. Moskowitz CH, Stiff P, Gordon MS, McNiece I, Ho AD, Costa JJ, Broun ER, Bayer RA, Wyres M, Hill J, Jelaca-Maxwell K, Nichols CR, Brown SL, Nimer SD, Gabrilove J . Recombinant methionyl human stem cell factor and filgrastim for peripheral blood progenitor cell mobilisation and transplantation in non-Hodgkin's lymphoma patients – results of a phase I/II trial Blood 1997 89: 3136–3147

    CAS  PubMed  Google Scholar 

  19. Shpall EJ, Wheeler CA, Turner SA, Yanovich S, Brown RA, Pecora AL, Shea TC, Mangan KF, Williams SF, LeMaistre CF, Long GD, Jones R, Davis MW, Murphy-Filkins R, Parker WR, Glaspy JA . A randomized phase 3 study of peripheral blood progenitor cell mobilisation with stem cell factor and filgrastim in high-risk breast cancer patients Blood 1999 93: 2491–2501

    CAS  PubMed  Google Scholar 

  20. Keller JR, Ortiz M, Ruscetti FW . Steel factor (c-kit ligand) promotes the survival of hemopoietic stem/progenitor cells in the absence of cell division Blood 1995 86: 1757–1764

    CAS  PubMed  Google Scholar 

  21. Gonzalez-Requejo A, Madero L, Diaz MA, Villa M, Garcia-Escribano C, Balas A, Lillo R, Garcia-Sanchez F, Benito A, Vicario JL . Progenitor cell subsets and engraftment kinetics in children undergoing autologous peripheral blood stem cell transplantation Br J Haematol 1998 101: 104–110

    Article  CAS  Google Scholar 

  22. Thomson AW, Lu L . Dendritic cells as regulators of immune reactivity: implications for transplantation Transplantation 1999 68: 1–8

    Article  CAS  Google Scholar 

  23. Andrews RG, Briddell RA, Knitter GH, Opie T, Bronsden M, Myerson D, Appelbaum FR, McNiece IK . In vivo synergy between recombinant human stem cell factor and recombinant human granulocyte colony-stimulating factor in baboons enhanced circulation of progenitor cells Blood 1994 84: 800–810

    CAS  PubMed  Google Scholar 

  24. Gratama JW, Keeney M, Sutherland DR . Enumeration of CD34+ hemopoietic stem and progenitor cells Curr Protocol Cytometry 1999 6.4.1–6.4.22

  25. Gratama JW, Menendez P, Kraan J, Orfao A . Loss of CD34(+) hemopoietic progenitor cells due to washing can be reduced by the use of fixative-free erythrocyte lysing reagents J Immunol Meth 2000 239: 13–23

    Article  CAS  Google Scholar 

  26. Almeida J, Bueno C, Alguero MC, Sanchez ML, Canizo MC, Fernandez ME, Vaquero JM, Laso FJ, Escribano L, San Miguel JF, Orfao A . Extensive characterization of the immunophenotype and pattern of cytokine production by distinct subpopulations of normal human peripheral blood MHC II+/lineage− cells Clin Exp Immunol 1999 118: 392–401

    Article  CAS  Google Scholar 

  27. Kappelmayer J, Gratama JW, Karaszi E, Menendez P, Ciudad J, Rivas R, Orfao A . Flow cytometric detection of intracellular myeloperoxidase, CD3 and CD79a. Interaction between monoclonal antibody clones, fluorochromes and sample preparation protocols J Immunol Meth 2000 242: 53–65

    Article  CAS  Google Scholar 

  28. Weaver A, Chang J, Wrigley E, de Wynter E, Woll PJ, Lind M, Jenkins B, Gill C, Wilkinson PM, Pettengell R, Radford JA, Collins CD, Dexter TM, Testa NG, Crowther D . Randomized comparison of progenitor-cell mobilisation using chemotherapy, stem-cell factor, and filgrastim or chemotherapy plus filgrastim alone in patients with ovarian cancer J Clin Oncol 1996 16: 2601–2612

    Article  Google Scholar 

  29. Olavarria E, Kanfer EJ . Selection and use of chemotherapy with hemopoietic growth factors for mobilisation of peripheral blood progenitor cells Curr Opin Hematol 2000 7: 191–196

    Article  CAS  Google Scholar 

  30. Facon T, Harousseau JL, Maloisel F, Attal M, Odriozola J, Alegre A, Schroyens W, Hulin C, Schots R, Marin P, Guilhot F, Granena A, De Waele M, Pigneux A, Meresse V, Clark P, Reiffers J . Stem cell factor in combination with filgrastim after chemotherapy improves peripheral blood progenitor cell yield and reduces apheresis requirements in multiple myeloma patients: a randomized, controlled trial Blood 1999 94: 1218–1225

    CAS  PubMed  Google Scholar 

  31. Basser RL, To LB, Begley CG, Maher D, Juttner C, Cebon J, Mansfield R, Olver I, Duggan G, Szer J, Collins J, Schwartz B, Marty J, Menchaca D, Sheridan WP, Fox RM, Green MD . Rapid hemopoietic recovery after multicycle high-dose chemotherapy: enhancement of filgrastim-induced progenitor-cell mobilisation by recombinant human stem-cell factor J Clin Oncol 1998 16: 1899–1908

    Article  CAS  Google Scholar 

  32. Perez-Simon JA, Martin A, Caballero D, Corral M, Nieto MJ, Gonzalez M, Vazquez L, Lopez-Berges C, Canizo MC, Mateos MV, Orfao A, San Miguel JF . Clinical significance of CD34+ cell dose in long-term engraftment following autologous peripheral blood stem cell transplantation Bone Marrow Transplant 1999 24: 1279–1283

    Article  CAS  Google Scholar 

  33. Bellido M, Sureda A, Martino R, Madoz P, Garcia J, Brunet S . Collection of peripheral blood progenitor cells for autografting with low-dose cyclophosphamide plus granulocyte colony-stimulating factor Haematologica 1998 83: 428–431

    CAS  PubMed  Google Scholar 

  34. Mazza P, Palazzo G, Amurri B, Cervellera M, Manna N, Fellini G, Casulli F, Ghiggini M, Peluso A, Pricolo G, Prudenzano A, Stani L . Analysis of feasibility of myeloablative therapy and autologous peripheral stem cell (PBSC) transplantation in the elderly: an interim report Bone Marrow Transplant 1999 23: 1273–1278

    Article  CAS  Google Scholar 

  35. Arroyo JL, Gutierrez NC, García-Marcos MA, Villarroel R, Galindo P, Fernandez ME, IzarraA, Del Canizo C, Caballero D, San Miguel JF . Monocyte counts: an early index of hemopoietic reconstitution after peripheral blood stem cell transplantation Br J Haematol 2000 19: 987–989

    Google Scholar 

  36. Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R, Liu YJ . Reciprocal control of T helper cell and dendritic cell differentiation Science 1999 283: 1183–1196

    Article  CAS  Google Scholar 

  37. Ziegler-Heitbrock HW, Fingerle G, Strobel M, Schraut W, Stelter F, Schutt C, Passlick B, Pforte A . The novel subset of CD14+/CD16+ blood monocytes exhibits features of tissue macrophages Eur J Immunol 1993 23: 2053–2058

    Article  CAS  Google Scholar 

  38. Schakel K, Mayer E, Federle C, Schmitz M, Riethmuller G, Rieber EP . A novel dendritic cell population in human blood: one-step immunomagnetic isolation by a specific mAb (M-DC8) and in vitro priming of cytotoxic T lymphocytes Eur J Immunol 1998 28: 4084–4093

    Article  CAS  Google Scholar 

  39. Fearnley DB, Whyte LF, Carnoutsos SA, Cook AH, Hart DN . Monitoring human blood dendritic cell numbers in normal individuals and in stem cell transplantation Blood 1999 93: 728–736

    CAS  PubMed  Google Scholar 

  40. Ho AD, Young D, Maruyama M, Corringham RE, Mason JR, Thompson P, Grenier K, Law P, Terstappen LW, Lane T . Pluripotent and lineage-committed CD34+ subsets in leukapheresisproducts mobilized by G-CSF, GM-CSF vs. a combination of both Exp Hematol 1996 24: 1460–1468

    CAS  PubMed  Google Scholar 

  41. Miclea J, Chomienne C . Flow cytometry comparison of CD34+ subsets in bone marrow and peripheral blood after priming with glycosylated or non-glycosylated rhG-CSF Bone Marrow Transplant 1999 24: 441–443

    Article  CAS  Google Scholar 

  42. Arpinati M, Green CL, Heimfeld S, Heuser JE, Anasetti C . Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells Blood 2000 95: 2484–2490

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by: AMGEN Inc (Thousand Oaks, CA, USA), European Community BIOMED 2 program (Concerted Action BMH4-CT97–2611) and by FONDOS FEDER (1FD97–0451) from DGES, Madrid, Spain. P Menéndez is supported by a grant from Fondo de Investigaciones Sanitarias (FIS, BEFI 98/9669). C Bueno is supported by a grant from the Dirección General de Universidades e Investigación (Consejería de Educación y Cultura, Junta de Castilla y León; Valladolid, Spain). We thank Mark Anderson for his help with the English language.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menéndez, P., Prósper, F., Bueno, C. et al. Sequential analysis of CD34+ and CD34 cell subsets in peripheral blood and leukapheresis products from breast cancer patients mobilized with SCF plus G-CSF and cyclophosphamide. Leukemia 15, 430–439 (2001). https://doi.org/10.1038/sj.leu.2402051

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402051

Keywords

This article is cited by

Search

Quick links