Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Cytogenetics

Arsenic trioxide (As2O3)-induced apoptosis and differentiation in retinoic acid-resistant acute promyelocytic leukemia model in hGM-CSF-producing transgenic SCID mice

Abstract

Recent clinical studies in China and USA showed that arsenic trioxide (As2O3) is an effective treatment of acute promyelocytic leukemia (APL) patients refractory to all-trans retinoic acid (RA). We here investigate the effects of As2O3on RA-resistant APL in vivo and in vitro using our RA-resistant APL model system. As2O3 can induce inhibition of cellular growth of both RA-sensitive NB4 and RA-resistant UF-1 APL cells via induction of apoptosis in vitro. The expression of BCL-2 protein decreased in a dose- and time-dependent manner in NB4 cells. Interestingly, the levels of BCL-2 protein were not modulated by As2O3, but it did upregulate BAX protein in UF-1 cells. UF-1 cells (1 × 107) were transplanted into hGM-CSF-producing transgenic SCID mice and successfully formed subcutaneous tumors. After 40 days of implantation, mice were treated with As2O3, all-trans RA and PBS for 21 days. In all-trans RA- and PBS-treated mice, tumors grew rapidly, with a 4.5-fold increase in volume at day 21 compared to the initial size. In marked contrast, tumor size was decreased to half of the initial size by the treatment of As2O3, which resulted in cells with the typical appearance of apoptosis. Interestingly, one of the As2O3-treated mice showed mature granulocytes in the diminished tumor, suggesting that As2O3 had dual effects on RA-resistant APL cells in vivo: both inducing apoptosis and differentiation of the leukemic cells. We conclude that our RA-resistant APL model will be useful for evaluating novel therapeutic approaches to patients with RA-resistant APL, and for further investigation of the metabolism of As2O3 in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A . The t(15;17) translocation of acute promyelocytic leukemia fuses the retinoic acid receptor α gene to a novel transcribed locus Nature 1991 347: 558–561

    Article  Google Scholar 

  2. Kakizuka A, Miller WH Jr, Umesono K, Warrell RP Jr, Frankel SR, Murty VVVS, Dmitrovsky E, Evans RM . Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML Cell 1991 66: 663–674

    Article  CAS  Google Scholar 

  3. Grignani F, Ferrucci PF, Testa U, Talamo G, Fagioli M, Alcalay M, Mencarelli A, Grignani F, Peschle C, Nicoletti I, Pelicci PG . The acute promyelocytic leukemia specific PML/RARα protein inhibits differentiation and promotes survival of myeloid precursor cells Cell 1993 74: 423–431

    Article  CAS  Google Scholar 

  4. Warrell RP Jr, de Thé H, Wang ZY, Degos L . Acute promyelocytic leukemia New Engl J Med 1993 329: 177–189

    Article  Google Scholar 

  5. Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, Gu HT, Wang ZY . Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia Blood 1988 72: 567–572

    CAS  PubMed  Google Scholar 

  6. Castaigne S, Chomienne C, Daniel MT, Ballarini P, Berger R, Fenaux P, Degos L . All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results Blood 1990 76: 1704–1709

    CAS  PubMed  Google Scholar 

  7. Warrell RP Jr, Frankel SR, Miller WH Jr, Sheinberg DA, Itri LM, Hittelman WN, Vyas R, Andreeff M, Tafuri A, Jakubowski A, Gabrilove J, Gordon MS, Dmitrovski E . Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid) New Engl J Med 1991 324: 1385–1393

    Article  Google Scholar 

  8. Kanamaru A, Takemoto Y, Tanimoto M, Murakami H, Asou N, Kobayashi T, Kuriyama K, Ohmoto E, Sakamaki H, Tsubaki K, Hiraoka H, Yamada O, Oh H, Saito K, Matsuda S, Minato K, Ueda T, Ohno R . All-trans retinoic acid for the treatment of newly diagnosed acute promyelocytic leukemia Blood 1995 85: 1202–1206

    CAS  PubMed  Google Scholar 

  9. Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ, Chen Y, Zhou L, Fang ZW, Wang YT, Ma J, Zhang P, Zhang TD, Chen SJ, Chen Z, Wang ZY . Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL). II. Clinical efficiency and pharmacokinetics in relapsed patients Blood 1997 89: 3354–3360

    CAS  PubMed  Google Scholar 

  10. Soignet SL, Maslak P, Wang Z-G, Thanwar S, Calleja E, Dardashti LJ, Corso D, DeBlasio A, Gabrilove J, Scheinberg DA, Pandorfi PP, Warrell RP Jr . Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide New Engl J Med 1998 339: 1341–1348

    Article  CAS  Google Scholar 

  11. Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM, Shen ZX, Sun GL, Ma J, Zhang P, Zhang TD, Gazin C, Naoe T, Chen SJ, Wang ZY, Chen Z . In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cells apoptosis with downregulation of bcl-2 expression and modulation of PML-RARα/PML proteins Blood 1996 88: 1052–1061

    CAS  PubMed  Google Scholar 

  12. Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, Han ZG, Ni JH, Shi GY, Jia PM, Liu MM, He KL, Niu C, Ma J, Zhang P, Zhang TD, Paul P, Naoe T, Kitamura K, Miller WH, Waxman S, Wang ZY, de The H, Chen SJ, Chen Z . Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells Blood 1997 89: 3345–3354

    CAS  PubMed  Google Scholar 

  13. Kizaki M, Matsushita H, Takayama N, Muto A, Ueno H, Awaya N, Kawai Y, Asou H, Kamada N, Ikeda Y . Establishment and characterization of a novel acute promyelocytic leukemia cell line (UF-1) with retinoic acid-resistant features Blood 1996 88: 1824–1833

    CAS  PubMed  Google Scholar 

  14. Fukuchi Y, Kizaki M, Kinjo K, Awaya N, Ito M, Kawai Y, Umezawa A, Hata J, Ueyama Y, Ikeda Y . Establishment of a retinoic acid resistant human acute promyelocytic leukemia (APL) model in hGM-CSF transgenic SCID mice Br J Cancer 1998 78: 878–884

    Article  CAS  Google Scholar 

  15. Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, Berger R . NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3) Blood 1991 77: 1080–1086

    CAS  PubMed  Google Scholar 

  16. Miyakawa Y, Fukuchi Y, Ito M, Kobayashi K, Kumamochi T, Ikeda Y, Takeda Y, Yanaka T, Miyasaka M, Nakahata T, Tamaoki N, Nomura T, Ueyama Y, Shimamura K . Establishment of humangranulocyte–macrophage colony stimulating factor producingtransgenic SCID mice Br J Haematol 1996 95: 437–442

    Article  CAS  Google Scholar 

  17. Workman P, Balmain A, Hickman JA, MoNally NJ, Mitchison NA, Pirepoint CG, Raymond R, Rowlatt C, Stephens TC, Wallace J . UKCCCR guidelines for the welfare of animals in experimental neoplasia Br J Cancer 1988 58: 109–113

    Article  Google Scholar 

  18. Lo Coco F, Nervi C, Avvisati G, Mandelli F . Acute promyelocytic leukemia: a curable disease Leukemia 1998 12: 1866–1880

    Article  CAS  Google Scholar 

  19. Kizaki M, Ueno H, Matsushita H, Takayama N, Muto A, Awaya N, Ikeda Y . Retinoid resistance in leukemic cells Leuk Lymphoma 1997 25: 425–434

    Article  Google Scholar 

  20. Fenaux P, Chomienne C, Degos L . Acute promyelocytic leukemia: biology and treatment Semin Oncol 1997 24: 92–102

    CAS  PubMed  Google Scholar 

  21. Mandelli F, Diverio D, Avvisati G, Luciano A, Barbui T, Bernasconi C, Broccia G, Cerri R, Falda M, Fioritoni G, Leoni F, Liso V, Petti MC, Rodeghiero F, Saglio G, Vegna ML, Visani G, Jehn U, Willemze R, Muus P, Pelicci PG, Biondi A, Lo Coco F . Molecular remission in PML/RARα-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy Blood 1997 90: 1014–1021

    CAS  PubMed  Google Scholar 

  22. Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, Feusner JH, Ogden A, Shepherd L, Willman C, Bloomfield CD, Rowe JM, Wiernik PH . All-trans retinoic acid in acute promyelocytic leukemia New Engl J Med 1997 337: 1201–1208

    Article  Google Scholar 

  23. Altabef M, Garcia M, Lavau C, Bae S-C, Dejean A, Samarut J . A retrovirus carrying the promyelocyte-retinoic acid receptor PML-RARα fusion genes transforms hematopioetic progenitors in vitro and induces acute leukamia EMBO J 1996 15: 2707–2716

    Article  CAS  Google Scholar 

  24. Early E, Moore MAS, Kakizuka A, Nason-Burchenal K, Martin P, Evans RM . Transgenic expression of PML-RARα impairs myelopoiesis Proc Natl Acad Sci USA 1996 93: 7900–7904

    Article  CAS  Google Scholar 

  25. He L-Z, Tribioli C, Rivi R, Peruzzi D, Pelicci PG, Soares V, Cattoretti C, Pandolfi PP . Acute leukemia with promyelocytic features in PML/RARα transgenic mice Proc Natl Acad Sci USA 1997 94: 5302–5307

    Article  CAS  Google Scholar 

  26. Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ . Altered myeloid development and acute leukemia in transgenic mice expressing PML-RARα under control of cathepsin G regulatory sequences Blood 1997 89: 376–387

    CAS  PubMed  Google Scholar 

  27. Brown D, Kogan S, Lagasse E, Weissman I, Alcalay M, Pelicci PG, Atwater S, Bishop JM . A PMLRARα transgene initiate murine promyelocytic leukemia Proc Natl Acad Sci USA 1997 94: 2551–2556

    Article  CAS  Google Scholar 

  28. Sawyer CL, Gishizky ML, Quan S, Golde DW, Witte ON . Propagation of human blastic myeloid leukemias in SCID mouse Blood 1992 79: 2089–2098

    Google Scholar 

  29. Namikawa R, Ueda R, Kyoizumi S . Growth of human myeloid leukemias in the human marrow environment of SCID-hu mice Blood 1993 82: 2526–2536

    CAS  Google Scholar 

  30. Fukuchi Y, Miyakawa Y, Kobayashi K, Kuramochi T, Shimamura K, Tamaoki N, Nomura T, Ueyama Y, Ito M . Cytokine dependent growth of human TF-1 leukemic cell line in human GM-CSF and IL-3 producing transgenic SCID mice Leukemia Res 1998 22: 837–843

    Article  CAS  Google Scholar 

  31. Reed JC . Double identity for proteins of the Bcl-2 family Nature 1997 387: 773–776

    Article  CAS  Google Scholar 

  32. Oltvai ZN, Milliman CL, Korsmeyer SJ . Bcl-2 heterodimerizes in vivo with a conserved homolog, BAX, that accelerates programmed cell death Cell 1993 74: 609–619

    Article  CAS  Google Scholar 

  33. Giannì M, Koken MHM, Chelbi-Alix MK, Benoit G, Lanotte M, Chen Z, de Thé H . Combined arsenic and retinoic acid treatment enhances differentiation and apoptosis in arsenic-resistant NB4 cells Blood 1998 91: 4300–4310

    PubMed  Google Scholar 

  34. Lallemand-Breitenbach V, Guillemin M-C, Janin A, Daniel M-T, Degos L, Kogan SC, Bishop JM, de Thé H . Retinoic acid and arsenic synergize to eradicate leukemic cells in a mouse model of acute promyelocytic leukemia J Exp Med 1999 189: 1043–1052

    Article  CAS  Google Scholar 

  35. Kizaki M, Muto A, Kinjo K, Ueno H, Ikeda Y . Application of heavy metal and cytokine for differentiation-inducing therapy in acute promyelocytic leukemia J Natl Cancer Inst 1998 90: 1906–1907

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ministry of Education, Science and Culture in Japan, the Special Cordination Funds for promoting Science and Technology of the Science and Technology Agency of the Japanese Government and the National Grant-in-Aid for the Establishment of a High Tech Research Center in a Private University.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinjo, K., Kizaki, M., Muto, A. et al. Arsenic trioxide (As2O3)-induced apoptosis and differentiation in retinoic acid-resistant acute promyelocytic leukemia model in hGM-CSF-producing transgenic SCID mice. Leukemia 14, 431–438 (2000). https://doi.org/10.1038/sj.leu.2401646

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401646

Keywords

This article is cited by

Search

Quick links