Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Molecular Biology of APL

The impact of differential binding of wild-type RARα, PML-, PLZF- and NPM-RARα fusion proteins towards transcriptional co-activator, RIP-140, on retinoic acid responses in acute promyelocytic leukemia

Abstract

Retinoic acid receptor (RA) heterodimer (RAR/RXR) activities have been shown to be repressed by transcriptional co-repressor, SMRT/N-CoR, in the absence of the ligand while upon all-trans retionic acid (ATRA) treatment, SMRT/N-CoR is dissociated from RARα leading to gene expression by the recruitment of transcriptional co-activators to the transcriptional complex. The difference in response to ATRA therapy between acute promyelocytic leukemia (APL) patients with PML-RARα fusion and PLZF-RARα fusion has recently been found to be partially due to the strong association of the transcriptional co-repressor, SMRT/N-CoR, with PLZF domain. We demonstrate that SMRT association, as with PML-RARα, can be released from NPM-RARα at pharmacological concentration of ATRA (10−6M). Moreover, we show for the first time that the interaction between the transcriptional co-activator, RIP-140, and PML-, PLZF- or NPM-RARα fusion proteins can be positively stimulated by ATRA although they are less sensitive as compared with the wild-type RARα. Our results suggest that the dissociation of transcriptional co-repressors, SMRT/N-CoR, and recruitment of co-activators, eg RIP-140, to APL-associated fusion proteins constitute a common molecular mechanism in APL and underlie the responsiveness of the disease to RA therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A . The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR Cell 1991 66: 675–684

    Article  PubMed  Google Scholar 

  2. Goddard AD, Borrow J, Freemont P, Solomon E . Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia Science 1991 254: 1371–1374

    Article  CAS  PubMed  Google Scholar 

  3. Kakizuka A, Miller WH Jr, Umesono K, Warrell RP Jr, Frankel SR, Murty VVVS, Dmitrovsky E, Evans RM . Chromosome translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML Cell 1991 66: 663–674

    Article  CAS  PubMed  Google Scholar 

  4. Chen Z, Brand NJ, Chen A, Chen SJ, Tong JH, Wang ZY, Waxman S, Zelent A . Fusion between a novel Krüppel-like zinc finger gene and the retinoic acid receptor-α locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia EMBO J 1993 12: 1161–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ . The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion Blood 1996 87: 882–886

    CAS  PubMed  Google Scholar 

  6. Wells RA, Catzavelos C, Kamel-Reid S . Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia Nat Genet 1997 17: 109–113

    Article  CAS  PubMed  Google Scholar 

  7. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM . The nuclear receptor superfamily–the 2nd decade Cell 1995 83: 835–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leid M, Kastner P, Chambon P . Multiplicity generates diversity in the retinoic acid signalling pathways Trends Biochem Sci 1992 17: 427–433

    Article  CAS  PubMed  Google Scholar 

  9. Chambon P . A decade of molecular biology of retinoic acid receptors FASEB J 1996 10: 940–954

    Article  CAS  PubMed  Google Scholar 

  10. Collins SJ, Tsai S . Retinoic acid receptors in hematopoiesis Curr Top Microbiol Immunol 1996 211: 7–15

    CAS  PubMed  Google Scholar 

  11. Hörlein AJ, Näär AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Söderström M, Glass CK . Rosenfeld MG. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor Nature 1995 377: 397–404

    Article  PubMed  Google Scholar 

  12. Chen JD, Evans RM . A transcriptional co-repressor that interacts with nuclear hormone receptors Nature 1995 377: 454–457

    Article  CAS  PubMed  Google Scholar 

  13. Kurokawa R, Söderström M, Hörlein A, Halachmi S, Brown M, Rosenfeld MG, Glass CK . Polarity-specific activities of retinoic acid receptors determined by a co-repressor Nature 1995 377: 451–454

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Stillman DJ . In vitro regulation of a SIN3-dependent DNA-binding activity by stimulatory and inhibitory factors Proc Natl Acad Sci USA 1990 87: 9761–9765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang H, Clark I, Nicholson PR, Herskowitz I, Stillman DJ . The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helix motifs Mol Cell Biol 1990 10: 5927–5936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang H, Stillman DJ . Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein Mol Cell Biol 1993 13: 1805–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taunton J, Hassig CA, Schreiber SL . A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p Science 1996 272: 408–411

    Article  CAS  PubMed  Google Scholar 

  18. Perez A, Kastner P, Sethi S, Lutz Y, Reibel C, Chambon P . PMLRAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR EMBO J 1993 12: 3171–3182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Licht JD, Shaknovich R, English MA, Melnick A, Li J-Y, Reddy JC, Dong S, Chen S-J, Zelent A, Waxman S . Reduced and altered DNA-binding and transcriptional properties of the PLZF-retinoic acid receptor-α chimer generated in t(11;17)-associated acute promyelocytic leukemia Oncogene 1996 12: 323–336

    CAS  PubMed  Google Scholar 

  20. Dong S, Zhu J, Reid A, Strutt P, Guidez F, Zhong H-J, Wang Z-Y, Licht J, Waxman S, Chomienne C, Zelent A, Chen S-J . Amino-terminal protein–protein interaction motif (POZ-domain) is responsible for activities of the promyelocytic leukaemia zinc finger-retinoic acid receptor-α fusion protein Proc Natl Acad Sci USA 1996 93: 3624–3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang ME, Ye YC, Chen SR, Cai JR, Lu JX, Zhao L, Gu RJ, Wang ZY . Use of all-trans retinoic acid in the treatment of acute promyelocytic leukaemia Blood 1988 72: 567–572

    CAS  PubMed  Google Scholar 

  22. Redner RL, Corey SJ, Rush EA . Differentiation of t(5;17) variant acute promyelocytic leukemic blasts by all-trans retinoic acid Leukemia 1997 11: 1014–1016

    Article  CAS  PubMed  Google Scholar 

  23. Licht JD, Chen A, Goy A, Wu Y, Scott AA, DeBlasio A, Miller WH, Zelenetz AD, William CL, Head DR, Chomienne C, Chen Z, Chen SJ, Zelent A, MacIntyre E, Veil A, Cortes J, Kantarjian H, Waxman S . Clinical and molecular characterization of acute promyelocytic leukemia associated with translocation (11;17) Blood 1995 85: 1083–1094

    CAS  PubMed  Google Scholar 

  24. Hong S-H, David G, Wong C-W, Dejean A, Privalsky ML . SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor α (RARα) and PLZF-RARα oncoproteins associated with acute promyelocytic leukemia Proc Natl Acad Sci USA 1997 94: 9028–9033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr, Evans RM . Role of the histone deacetylase complex in acute promyelocytic leukaemia Nature 1998 391: 811–814

    Article  CAS  PubMed  Google Scholar 

  26. He L-Z, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A, Pandolfi PP . Distinct interactions of PML-RARα and PLZF-RARα with co-repressors determine differential responses to RA in APL Nat Genet 1998 18: 126–135

    Article  CAS  PubMed  Google Scholar 

  27. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Grignani F, Lazar MA, Minucci S, Pelicci PG . Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia Nature 1998 391: 815–818

    Article  CAS  PubMed  Google Scholar 

  28. Guidez F, Ivins S, Zhu J, Söderström M, Waxman S, Zelent A . Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARα underlie molecular pathogenesis and treatment of acute promyelocytic leukemia Blood 1998 91: 2634–2642

    CAS  PubMed  Google Scholar 

  29. David G, Alland L, Hong S-H, Wong C-W, DePinho RA, Dejean A . Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein Oncogene 1998 16: 2549–2556

    Article  CAS  PubMed  Google Scholar 

  30. Cavailles V, Dauvois S, Danielian PS, Parker MG . Interaction of proteins with transcriptionally active estrogen receptors Proc Natl Acad Sci USA 1994 91: 10009–10013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cavailles V, Dauvois S, L'Horset F, Lopez G, Hoare S, Kushner PJ, Parker MG . Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor EMBO J 1995 14: 3741–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. L'Horset F, Dauvois S, Heery DM, Cavailles V, Parker MG . RIP-140 interacts with multiple nuclear receptors by means of two distinct sites Mol Cell Biol 1996 16: 6029–6036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Henttu PMA, Kalkhoven E, Parker MG . AF-2 activity and recruitment of steroid receptor coactivator 1 to the estrogen receptor depend on a lysine residue conserved in nuclear receptors Mol Cell Biol 1997 17: 1832–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Horwitz KB, Jackson TA, Bain DL, Richer JK, Takimoto GS, Tung L . Nuclear receptor coactivators and corepressors Mol Endocrinol 1996 10: 1167–1177

    CAS  PubMed  Google Scholar 

  35. Jansen JH, Mahfoudi A, Rambaud S, Lavau C, Wahli W, Dejean A . Multimeric complexes of the PML-retinoic acid receptor alpha fusion protein in acute promyelocytic leukemia cells and interference with retinoid and peroxisome-proliferator signaling pathways Proc Natl Acad Sci USA 1995 92: 7401–7405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu Q-R, Chan PK . Formation of nucleophosmin/B23 oligomers requires both the amino- and the carboxyl-terminal domains of the protein Eur J Biochem 1991 200: 715–721

    Article  CAS  PubMed  Google Scholar 

  37. Bischof D, Pulford K, Mason DY, Morris SW . Role of the nucleophosmin (NPM) portion of the non-Hodgkin's lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis Mol Cell Biol 1997 17: 2312–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nagpal S, Saunders M, Kastner P, Durand B, Nakshatri J, Chambon P . Promotor context- and response element-dependent specificity of the transcriptional activation and modulating functions of retinoic acid receptors Cell 1992 70: 1007–1019

    Article  CAS  PubMed  Google Scholar 

  39. Nagpal S, Friant S, Nakshatri H, Chambon P . RARα and RXRα: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in vivo EMBO J 1993 12: 2349–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacharewski T, Chen JY, Staub A, Garnier JM, Mader S, Chambon P . Purification, cloning and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently Cell 1992 68: 377–395

    Article  CAS  PubMed  Google Scholar 

  41. Green S . Nuclear hormone receptors. Promiscuous liaisons Nature 1993 361: 590–591

    Article  CAS  PubMed  Google Scholar 

  42. Heery DM, Kalkhoven E, Hoare S, Parker MG . A signature motif in transcriptional co-activators mediates binding to nuclear receptors Nature 1997 387: 733–736

    Article  CAS  PubMed  Google Scholar 

  43. Kastner P, Perez A, Lutz Y, Rochette-Egly C, Gaub MP, Durand B, Lanotte M, Berger R, Chambon P . Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins EMBO J 1992 11: 629–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Z-G, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R, Pandolfi PP . Pml is essential for multiple apoptotic pathways Nat Genet 1998 20: 266–272

    Article  CAS  PubMed  Google Scholar 

  45. Quignon F, De Bels F, Koken M, Feunteun J, Ameisen JC, de Thé H . PML induces a novel caspase-independent death process Nat Genet 1998 20: 259–265

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr SW Morris, St Jude Children's Hospital, Memphis, TN, for kindly sending us the NPM-ALK plasmid, which was helpful in the construction of NPM-RARα expression plasmid. We thank Professor Zhu Chen, Shanghai Second Medical University and Dr A Zelent, LRF, London for helpful discussion. This work was supported by a RGC fundable-HKU block grant, 344-046-0001.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

So, C., Dong, S., So, C. et al. The impact of differential binding of wild-type RARα, PML-, PLZF- and NPM-RARα fusion proteins towards transcriptional co-activator, RIP-140, on retinoic acid responses in acute promyelocytic leukemia. Leukemia 14, 77–83 (2000). https://doi.org/10.1038/sj.leu.2401643

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401643

Keywords

This article is cited by

Search

Quick links