Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure and Phase Transition in Solid Hydrogen and Deuterium Sulphides

Abstract

SPECIFIC heat measurements1–3 have shown that solid hydrogen sulphide undergoes a discontinuous transition at 103.5 K followed by a lambda transition which is completed at about 126.2 K. Similar transitions were found4 in solid deuterium sulphide at somewhat higher temperatures, 107.8 and 132.9 K respectively. The lowest solid phase of both substances is optically anisotropic4 whereas the two higher phases are isotropic. Dielectric constant measurements5–7 suggested that the orientation of the hydrogen sulphide molecules is ordered in the lowest solid phase and disordered in the two higher phases. This view gained further support from infrared8–11, Raman12,13 and nuclear magnetic resonance14,15 studies. No model has been put forward for the structure of the ordered phase; the investigators could not agree even on its symmetry. Up to now eight different point group symmetries have been proposed, the majority favouring tetragonal symmetry with eight molecules in the primitive unit cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Clusius, K., Nachr. Ges. Wiss., Math. Phys. Kl. Fachgr. III, 171 (Göttingen, 1933).

    Google Scholar 

  2. Clusius, K., and Frank, A., Z. Phys. Chem., B, 34, 420 (1936).

    Google Scholar 

  3. Giauque, W. F., and Blue, R. W., J. Amer. Chem. Soc., 58, 831 (1936).

    Article  CAS  Google Scholar 

  4. Kruis, A., and Clusius, K., Z. Phys. Chem., B, 38, 156 (1937).

    Google Scholar 

  5. Kemp, J. D., and Denison, G. H., J. Amer. Chem. Soc., 55, 251 (1933).

    Article  CAS  Google Scholar 

  6. Smyth, P. C., and Hitchcock, C. S., J. Amer. Chem. Soc., 56, 1084 (1934).

    Article  CAS  Google Scholar 

  7. Havriliak, S., Swenson, R. W., and Cole, R. H., J. Chem. Phys., 23, 134 (1955).

    Article  ADS  CAS  Google Scholar 

  8. Lohman, J. B., Reding, F. P., and Hornig, D. F., J. Chem. Phys., 19, 252 (1951).

    Article  ADS  CAS  Google Scholar 

  9. Reding, F. P., and Hornig, D. F., J. Chem. Phys., 27, 1024 (1957).

    Article  ADS  CAS  Google Scholar 

  10. Anderson, A., and Walmsley, S. H., Mol. Phys., 9, 1 (1965).

    Article  ADS  CAS  Google Scholar 

  11. Taimsalu, P., and Robinson, D. W., Spectrochim. Acta, 21, 1921 (1965).

    Article  ADS  CAS  Google Scholar 

  12. Murphy, G. M., and Vance, J. E., J. Chem. Phys., 6, 426 (1938).

    Article  ADS  CAS  Google Scholar 

  13. Miller, R. E., and Leroi, G. E., J. Chem. Phys., 49, 2789 (1968).

    Article  ADS  CAS  Google Scholar 

  14. Alpert, N. L., Phys. Rev., 75, 398 (1949).

    Article  ADS  CAS  Google Scholar 

  15. Look, D. C., Lowe, I. J., and Northby, J. A., J. Chem. Phys., 44, 3441 (1966).

    Article  ADS  CAS  Google Scholar 

  16. Natta, G., Rend. R. Accad. Lincei, 11, 679, 749 (1930).

    CAS  Google Scholar 

  17. Natta, G., Nature, 127, 129 (1931).

    Article  ADS  CAS  Google Scholar 

  18. Vegard, L., Nature, 126, 916 (1930).

    Article  ADS  CAS  Google Scholar 

  19. Vegard, L., and Oserød, L. S., Avh. Norske Vidensk. Akad., I, Mat. Naturv. Kl., 7 (1942).

  20. Vegard, L., Avh. Norske Vidensk. Akad., I, Mat. Naturv. Kl., 6 (1943).

  21. Justi, E., and Nitka, H., Phys. Z., 37, 435 (1936).

    CAS  Google Scholar 

  22. Kitamura, N., Kashiwase, Y., Harada, J., and Honjo, G., Acta Cryst., 14, 687 (1961).

    Article  CAS  Google Scholar 

  23. Kitamura, N., and Harada, J., J. Phys. Soc. Japan, 17, Suppl. B-II, 245 (1962).

    Article  CAS  Google Scholar 

  24. Harada, J., and Kitamura, N., J. Phys. Soc. Japan, 19, 328 (1964).

    Article  ADS  CAS  Google Scholar 

  25. Sándor, E., and Farrow, R. F. C., Nature, 213, 171 (1967).

    Article  ADS  Google Scholar 

  26. Sándor, E., and Farrow, R. F. C., Nature, 215, 1265 (1967).

    Article  ADS  Google Scholar 

  27. Busing, W. R., Martin, K. C., and Levy, H. A., Rep. No. ORNL-TM-30, Oak Ridge National Laboratory (1962).

  28. Burrus, C. A., and Gordy, W., Phys. Rev., 92, 274 (1953).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SÁNDOR, E., OGUNADE, S. Structure and Phase Transition in Solid Hydrogen and Deuterium Sulphides. Nature 224, 905–907 (1969). https://doi.org/10.1038/224905b0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/224905b0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing