Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of a Mammalian Serine tRNA

Abstract

THE structures of several transfer RNAs from yeast and E. coli have recently been determined1–8. Although their sequences differ widely, they have some interesting features in common. They all conform to the clover-leaf model1 with the same numbers of nucleotides in the base-paired regions. In the five known structures of yeast transfer RNAs certain minor bases, when present, occur at identical sites. For example, 1–methylguanine and N2–methylguanine always occupy positions 9 and 10, respectively, from the 5′ end; 1–methyladenine occupies position 19 from the 3′–adenosine end and N2–dimethylguanine lies between the dihydrouridine-containing and anticodon loops. Because the primary structure of tyrosine tRNA from E. coli7 differs from that of yeast tyrosine tRNA3, it seemed of interest to compare the structure of a yeast transfer RNA with that of a mammalian one.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marquisee, M., Merrill, S. H., Penswick, J. R., and Zamir, A., Science, 147, 1462 (1965).

    Article  ADS  CAS  Google Scholar 

  2. Zachau, H. G., Dütting, D., and Feldmann, H., Hoppe Seyl. Z., 347, 212 (1966).

    Article  CAS  Google Scholar 

  3. Madison, J. T., Everett, G. A., and Kung, H., Science, 153, 531 (1966).

    Article  ADS  CAS  Google Scholar 

  4. Baev, A. A., Venkstern, T. V., Mirzabekov, A. D., Krutilina, A. I., Axelrod, V. A., Li, L., and Engelhardt, V. A., Third Symp. Fed. Europ. Biol. Soc., Warsaw (1966).

    Google Scholar 

  5. RajBhandary, U. L., Stuart, A., Faulkner, R. D., Chang, S. H., and Khorana, H. G., Proc. US Nat. Acad. Sci., 57, 751 (1967).

    Article  ADS  CAS  Google Scholar 

  6. Takemura, S., Mizutani, T., and Miyazaki, M., J. Biochem., Tokyo, 63, 274 (1968).

    Article  Google Scholar 

  7. Goodman, H. M., Abelson, J., Landy, A., Brenner, S., and Smith, J. D., Nature, 217, 1019 (1968).

    Article  ADS  CAS  Google Scholar 

  8. Dube, S. K., Marcker, K. A., Clark, B. F. C., and Cory, S., Nature, 218, 232 (1968).

    Article  ADS  CAS  Google Scholar 

  9. Harris, J. I., Biochem. J., 71, 451 (1959).

    Article  CAS  Google Scholar 

  10. Li, C. H., Lab. Invest., 8, 574 (1959).

    CAS  PubMed  Google Scholar 

  11. Narita, K., Biochim. Biophys. Acta, 28, 184 (1958).

    Article  CAS  Google Scholar 

  12. Muench, K. H., and Berg, P., Biochemistry, 5, 970 (1966).

    Article  CAS  Google Scholar 

  13. Sueoka, N., and Yamane, T., Proc. US Nat Acad. Sci., 48, 1454 (1962).

    Article  ADS  CAS  Google Scholar 

  14. Melchers, F., and Zachau, H. G., Biochim. Biophys. Acta, 95, 380 (1965).

    Article  CAS  Google Scholar 

  15. Staehelin, M., in Progress in Nucleic Acid Research, 2, 169 (Academic Press, New York, 1963).

    Google Scholar 

  16. Madison, J. T., Everett, G. A., and Kung, H. K., J. Biol. Chem., 242, 1318 (1967).

    CAS  PubMed  Google Scholar 

  17. Feldmann, H., Europ. J. Biochem., 2, 102 (1967).

    Article  CAS  Google Scholar 

  18. Hiramaru, M., Uchida, T., and Egami, F., Anal. Biochem., 17, 135 (1966).

    Article  CAS  Google Scholar 

  19. Staehelin, M., Biochim. Biophys. Acta, 49, 20 (1961).

    Article  CAS  Google Scholar 

  20. Apgar, J., Everett, G. A., and Holley, R. W., Proc. US Nat. Acad Sci., 53, 546 (1965).

    Article  ADS  CAS  Google Scholar 

  21. Baguley, B. C., and Staehelin, M., Biochemistry, 7, 45 (1968).

    Article  CAS  Google Scholar 

  22. Khorana, H. G., Buchi, H., Ghosh, H., Gupta, N., Jacob, T. M., Kossel, H., Morgan, R., Narang, S. A., Ohtsuka, E., and Wells, R. D., Cold Spring Harbor Symp. Quant. Biol., 31, 39 (1966).

    Article  CAS  Google Scholar 

  23. Makman, M. H., and Cantoni, G. L., Biochemistry, 5, 2246 (1966).

    Article  CAS  Google Scholar 

  24. Cramer, F., Angew. Chem., 79, 653 (1967).

    Article  Google Scholar 

  25. Cerutti, P., Biochem. Biophys. Res. Commun., 30, 434 (1968).

    Article  CAS  Google Scholar 

  26. Loftfield, R. B., and Eigner, E. A., J. Biol. Chem., 242, 5355 (1967).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

STAEHELIN, M., ROGG, H., BAGULEY, B. et al. Structure of a Mammalian Serine tRNA. Nature 219, 1363–1365 (1968). https://doi.org/10.1038/2191363a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2191363a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing