Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Proton Nuclear Magnetic Relaxation Investigations of Water

Abstract

A STRUCTURAL model for water represents the liquid as a mobile, imperfect framework with molecular water or waters at defect sites1. The framework is connected by hydrogen bonds while the molecules held interstitially are hydrogen bonded neither to each other nor to framework molecules. This communication reports experimental results consistent with this model as provided by an investigation of aqueous proton nuclear magnetic relaxation times.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Discussion and further references in: Frank, H. S., and Quist, A. S., J. Chem. Phys., 34, 604 (1961); Danford, M. D., and Levy, H. A., J. Amer. Chem. Soc., 84, 3965 (1962); Nemethy, G., and Scheraga, H. A., J. Chem. Phys., 36, 3382 (1962); Marchi, R. P., and Eyring, H., J. Phys. Chem., 68, 221 (1964). For a general review see: Kavanau, J. L., Water and Solute Water Interactions (Holden-Day, Inc., San Francisco, 1964).

    Google Scholar 

  2. Glick, R. E., and Tewari, K. C., J. Chem. Phys., 44, 546 (1966).

    Article  ADS  CAS  Google Scholar 

  3. Haupt, V. J., and Müller-Warmuth, W., Z. Naturforsch., 17 a, 405 (1962). Bonera, G., Chiodi, L., Lanzi, G., and Rigamonti, A., Nuovo Cimento, 17, 198 (1960); Solomon, I., J. Phys. Rad., 20, 786 (1959); Powles, J. G., and Cutler, D., Nature, 184, 1123 (1959).

    ADS  Google Scholar 

  4. Simpson, J. H., and Carr, H. Y., Phys. Rev., 111, 1201 (1958).

    Article  ADS  CAS  Google Scholar 

  5. Wang, J. H., Robinson, C. V., and Edelman, I. S., J. Amer. Chem. Soc., 75, 466 (1953). A general review of water self-diffusion is included in McCall, D. W., and Douglas, D. C., J. Phys. Chem., 69, 2001 (1965).

    Article  Google Scholar 

  6. Meiboom, S., J. Chem. Phys., 34, 375 (1961).

    Article  ADS  CAS  Google Scholar 

  7. Danford, M. D., and Levy, H. A., J. Amer. Chem. Soc., 84, 3965 (1962).

    Article  CAS  Google Scholar 

  8. Davis, jun., C. M., and Litovitz, T. A., J. Chem. Phys., 42, 2563 (1965). Buijs, K., and Choppin, G. R., J. Chem. Phys., 39, 2035 (1963).

    Article  ADS  CAS  Google Scholar 

  9. Hindman, J. C., J. Phys. Chem., 36, 1000 (1962).

    Article  CAS  Google Scholar 

  10. Glasstone, S., Laidler, K. J., and Eyring, H., The Theory of Rate Processes, chapter 9 (McGraw-Hill Book Company, Inc., New York, 1941).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GLICK, R., TEWARI, K. Proton Nuclear Magnetic Relaxation Investigations of Water. Nature 211, 739–740 (1966). https://doi.org/10.1038/211739a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/211739a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing