Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis

Abstract

Dynamin is a GTP-hydrolysing protein that is an essential participant in clathrin-mediated endocytosis by cells. It self-assembles into ‘collars’ in vitro which also form in vivo at the necks of invaginated coated pits. This self-assembly stimulates dynamin's GTPase activity and it has been proposed that dynamin hydrolyses GTP in order to generate the force needed to sever vesicles from the plasma membrane. A mechanism is now described in which self-assembly of dynamin is coordinated by a domain of dynamin with a GTPase-activating function. Unexpectedly, when dynamin mutants defective in self-assembly-stimulated GTPase activity are overexpressed, receptor-mediated endocytosis is accelerated. The results indicate that dynamin, like other members of the GTPase superfamily, functions as a molecular regulator in receptor-mediated endocytosis, rather than as a force-generating GTPase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GED stimulates both the minimal GTPase domain and full-length dynamin.
Figure 2: GED inhibits dynamin self-assembly and receptor-mediated endocytosis.
Figure 3: Identification of active residues within GED.
Figure 4: GTPase and self-assembly activities of full-length wild-type, R725A and K694A mutant dynamin
Figure 5: Receptor-mediated endocytosis is regulated by dynamin·GTP.
Figure 6: An intramolecular, assembly-dependent GAP functions to inactivate dynamin.

Similar content being viewed by others

References

  1. Schmid, S. L. Clathrin-coated vesicle formation and protein sorting: An integrated process. Annu. Rev. Biochem. 66, 511–548 (1997).

    Article  CAS  Google Scholar 

  2. Schmid, S. L., McNiven, M. A. & De Camilli, P. Dynamin and its partners: A progress report. Curr. Opin. Cell Biol. 10, 504–512 (1998).

    Article  CAS  Google Scholar 

  3. van der Bliek, A. M. Functional diversity in the dynamin family. Trends Cell Biol. 9, 96–102 (1999).

    Article  CAS  Google Scholar 

  4. Muhlberg, A. B., Warnock, D. E. & Schmid, S. L. Domain structure and intramolecular regulation of dynamin GTPase. EMBO J. 16, 6676–6683 (1997).

    Article  CAS  Google Scholar 

  5. Hinshaw, J. E. & Schmid, S. L. Dynamin self assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Warnock, D. E., Hinshaw, J. E. & Schmid, S. L. Dynamin self assembly stimulates its GTPase activity. J.Biol. Chem. 271, 22310–22314 (1996).

    Article  CAS  Google Scholar 

  7. Lin, H. C. & Gilman, A. G. Regulation of dynamin I GTPase activity by G protein betagamma subunits and phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 271, 27979–27982 (1996).

    Article  CAS  Google Scholar 

  8. Tuma, P. L., Stachniak, M. C. & Collins, C. A. Activation of dynamin GTPase by acidic phospholipids and endogenous rat brain vesicles. J. Biol. Chem. 268, 17240–17246 (1993).

    CAS  PubMed  Google Scholar 

  9. Barylko, B. et al. Synergistic activation of dynamin GTPase by Grb2 and phosphoinositides. J. Biol. Chem. 273, 3791–3797 (1998).

    Article  CAS  Google Scholar 

  10. Kosaka, T. & Ikeda, K. Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J. Neurobiol. 14, 207–225 (1983).

    Article  CAS  Google Scholar 

  11. Takei, K., McPherson, P. S., Schmid, S. L. & De Camilli, P. Tubular membrane invaginations coated by dynamin rings are induced by GTP-γS in nerve terminals. Nature 374, 186–190 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Sweitzer, S. & Hinshaw, J. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).

    Article  CAS  Google Scholar 

  13. Takei, K. et al. Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell 94, 131–141 (1998).

    Article  CAS  Google Scholar 

  14. Warnock, D. E. & Schmid, S. L. Dynamin GTPase, a force-generating molecular switch. Bioessays 18, 885–893 (1996).

    Article  CAS  Google Scholar 

  15. Liu, J. P. & Robinson, P. J. Dynamin and endocytosis. Endocrine Rev. 16, 590–607 (1995).

    CAS  Google Scholar 

  16. McNiven, M. A. Dynamin: a molecular motor with pinchase action. Cell 94, 151–607 (1998).

    Article  CAS  Google Scholar 

  17. Shpetner, H. S. & Vallee, R. B. Dynamin is a GTPase stimulated to high levels of activity by microtubules. Nature 355, 733–735 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Tuma, P. L. & Collins, C. A. Dynamin forms polymeric complexes in the presence of lipid vesicles. Characterization of chemically crosslinked dynamin molecules. J. Biol. Chem. 270, 26707–26714 (1995).

    Article  CAS  Google Scholar 

  19. Schmid, S. L. & Smythe, E. Stage-specific assays for coated pit formation and coated vesicle budding in vitro. J. Cell Biol. 114, 869–880 (1991).

    Article  CAS  Google Scholar 

  20. Carter, L. L., Redelmeier, T. E., Woollenweber, L. A. & Schmid, S. L. Multiple GTP-binding proteins participate in clathrin-coated vesicle-mediate endocytosis. J. Cell Biol. 120, 37–45 (1993).

    Article  CAS  Google Scholar 

  21. Maeda, K., Nakata, T., Noda, Y., Sato-Yoshitake, R. & Hirokawa, N. Interaction of dynamin with microtubules: its structure and GTPase activity investigated by using highly purified dynamin. Mol. Biol. Cell 3, 1181–1194 (1992).

    Article  CAS  Google Scholar 

  22. Mittal, R., Ahmadian, M. R., Goody, R. S. & Wittinghofer, A. Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoraluminate and GTPase activation proteins. Science 273, 115–117 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Carr, J. F. & Hinshaw, J. E. Dynamin assembles into spirals under physiological salt conditions upon the addition of GDP and gamma-phosphate analogues. J. Biol. Chem. 272, 28030–28035 (1997).

    Article  CAS  Google Scholar 

  24. Scheffzek, K., Ahmadian, R. & Wittinghofer, A. GTPase-activating proteins: helping hands to complement active site. Trends Biochem. Sci. 23, 257–262 (1998).

    Article  CAS  Google Scholar 

  25. Herskovits, J. S., Burgess, C. C., Obar, R. A. & Vallee, R. B. Effects of mutant rat dynamin on endocytosis. J. Cell Biol. 122, 565–578 (1993).

    Article  CAS  Google Scholar 

  26. Melen, K. et al. Interferon-induced Mx proteins form oligomers and contain a putative leucine zipper. J. Biol. Chem. 267, 25898–25907 (1992).

    CAS  PubMed  Google Scholar 

  27. Schwemmle, M., Richter, M. F., Hermann, C., Nassar, N. & Staeheli, P. Unexpected structural requirements for GTPase activity of the interferon-induced MxA protein. J. Biol. Chem. 270, 13518–13523 (1995).

    Article  CAS  Google Scholar 

  28. Warnock, D. E., Terlecky, L. J. & Schmid, S. L. Dynamin GTPase is stimulated by crosslinking through the C terminal proline rich domain. EMBO J. 14, 1322–1328 (1995).

    Article  CAS  Google Scholar 

  29. Gilbert, A., Paccaud, J. P. & Carpentier, J. L. Direct measurement of clathrin-coated vesicle formation using a cell-free assay. J. Cell Sci. 110, 3105–3115 (1997).

    CAS  PubMed  Google Scholar 

  30. Gout, I. et al. The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell 75, 25–36 (1993).

    Article  CAS  Google Scholar 

  31. Foster-Barber, A. & Bishop, J. M. Src interacts with dynamin and synapsin in neuronal cells. Proc. Natl Acad. Sci. USA 95, 4673–4677 (1998).

    Article  ADS  CAS  Google Scholar 

  32. Earnest, S., Khokhlatchev, A., Albanesi, J. P. & Barylko, B. Phosphorylation of dynamin by ERK2 inhibits the dynamin-microtubule interaction. FEBS Lett. 396, 62–66 (1996).

    Article  CAS  Google Scholar 

  33. Fersht, A. Enzyme Structure and Mechanism(Freeman, New York, (1995).

    Google Scholar 

  34. van der Bliek, A. M. et al. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biol. 122, 553–563 (1993).

    Article  CAS  Google Scholar 

  35. van der Bliek, A. M. & Meyerowitz, E. M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411–414 (1991).

    Article  ADS  CAS  Google Scholar 

  36. Chen, M. S. et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351, 583–586 (1991).

    Article  ADS  CAS  Google Scholar 

  37. Rothman, J. H., Raymond, C. K., Gilbert, T., O'Hara, P. J. & Stevens, T. H. Aputative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting. Cell 61, 1063–1074 (1990).

    Article  CAS  Google Scholar 

  38. Gammie, A. E., Kurihar, K. L., Vallee, R. B. & Rose, M. D. DNM1, a dynamin-related gene, participates in endosomal trafficking in yeast. J. Cell Biol. 130, 553–566 (1995).

    Article  CAS  Google Scholar 

  39. Otsuga, D. et al. The dynamin-like GTPase, Dnm1p, controls mitochondrial morphology in yeast. J. Cell Biol. 143, 333–349 (1998).

    Article  CAS  Google Scholar 

  40. Aebi, M. et al. cDNA structure and regulation of two interferon-induced human Mx proteins. Mol. Cell. Biol. 9, 5062–5072 (1989).

    Article  CAS  Google Scholar 

  41. Gu, X. & Verma, D. P. Phragmoplastin, a dynamin-like protein associated with cell plate formation in plants. EMBO J. 15, 695–704 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Damke for her contribution to analysis of dynamin function in vivo, L.M. Fujimoto and F. Simpson for advice and assistance, and J. Walter, W. E. Balch, L. Gerace, H. Damke and S. Newmyer for critically reading the manuscript. S.L.S. was supported by grants from the NIH and is an established investigator of the American Heart Association. S.S. was supported by a postdoctoral fellowship from the American Cancer Society and A.B.M. was supported by a predoctoral fellowship from the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra L. Schmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sever, S., Muhlberg, A. & Schmid, S. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481–486 (1999). https://doi.org/10.1038/19024

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19024

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing