Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy for childhood immunological diseases

Abstract

Gene therapy using autologous hematopoietic stem cells (HSC) that are corrected with the normal gene may have a beneficial effect on blood cell production or function, without the immunologic complications of allogeneic HSC transplantation. Childhood immunological diseases are highly favorable candidates for responses to gene therapy using HSC. Hemoglobinopathies, lysosomal and metabolic disorders and defects of hematopoietic stem and progenitor cells should also be ameliorated by gene therapy using autologous HSC. At present, gene therapy has been beneficial for patients with XSCID, ADA-deficient SCID and chronic granulomatous disease. The principle that partial marrow conditioning increases engraftment of gene-corrected HSC has been demonstrated. Clinical trials are being developed in Europe and the United States to treat several other genetic blood cell disorders. This progress is tempered by the serious complication observed in XSCID patients developing T lymphoproliferative disease. New methods for gene transfer (lentiviral and foamy viral vectors, semi-viral systems and gene correction) may retain or further increase the efficacy and decrease the risks from gene therapy using HSC. Ultimately, the relative benefits and risks of autologous gene therapy will be weighed against other available options (for example, allogeneic HSCT) to determine the treatment of choice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA . Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 1968; 2: 1366–1369.

    Article  CAS  Google Scholar 

  2. Buckley RH, Schiff SE, Schiff RI, Markert L, Williams LW, Roberts JL et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med 1999; 340: 508–516.

    Article  CAS  Google Scholar 

  3. Haddad E, Landais P, Friedrich W, Gerritsen B, Cavazzana-Calvo M, Morgan G et al. Long-term immune reconstitution and outcome after HLA-nonidentical T-cell depleted bone marrow transplantation for severe combined immunodeficiency: a European retrospective. Blood 1998; 91: 3646–3653.

    CAS  PubMed  Google Scholar 

  4. Antoine C, Muller S, Cant A, Cavazzana-Calvo M, Veys P, Vossen J et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet 2003; 361: 553–560.

    Article  Google Scholar 

  5. Grunebaum E, Mazzolari E, Porta F, Dallera D, Atkinson A, Reid B et al. Bone marrow transplantation for severe combined immune deficiency. JAMA 2006; 295: 508–518.

    Article  CAS  Google Scholar 

  6. Nolta JA, Kohn DB . Comparison of the effects of growth factors on retroviral vector-mediated gene transfer and the proliferative status of human hematopoietic progenitor cells. Hum Gene Ther 1990; 1: 257–268.

    Article  CAS  Google Scholar 

  7. Mazurier F, Gan OI, McKenzie JL, Doedens M, Dick JE . Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood 2004; 103: 545–552.

    Article  CAS  Google Scholar 

  8. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 1995; 270: 475–480.

    Article  CAS  Google Scholar 

  9. Bordignon C, Notarangelo LD, Nobili N, Ferrari G, Casorati G, Panina P et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science 1995; 270: 470–475.

    Article  CAS  Google Scholar 

  10. Onodera M, Ariga T, Kawamura N, Kobayashi I, Otsu M, Yamada M et al. Successful peripheral T-lymphocyte-directed gene transfer for a patient with severe combined immune deficiency caused by adenosine deaminase deficiency. Blood 1998; 91: 30–36.

    CAS  PubMed  Google Scholar 

  11. Hoogerbrugge PM, van Beusechem VW, Fisher A, Debree M, leDeist F, Perignon JL et al. Bone marrow gene transfer in three patients with adenosine deaminase deficiency. Gene Therapy 1996; 3: 179–183.

    CAS  PubMed  Google Scholar 

  12. Kohn DB, Weinberg KI, Nolta JA, Heiss LN, Lenarsky C, Crooks GM et al. Engraftment of gene-modified cells from umbilical cord blood in neonates with adenosine deaminase deficiency. Nat Med 1995; 1: 1017–1026.

    Article  CAS  Google Scholar 

  13. Aiuti A, Vai S, Mortellaro A, Casorati G, Ficara F, Andolfi G et al. Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nat Med 2002; 8: 423–425.

    Article  CAS  Google Scholar 

  14. Kohn DB, Hershfield MS, Carbonaro D, Shigeoka A, Brooks J, Smogorzewska EM et al. T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates. Nat Med 1998; 4: 775–780.

    Article  CAS  Google Scholar 

  15. Chan B, Wara D, Bastian J, Hershfield MS, Azen C, Parkman R et al. Long term efficacy of polyethylene glycol modified adenosine deaminase (PEG–ADA) enzyme replacement therapy for adenosine deaminase (ADA)-deficient severe combined immune deficiency (SCID). Clin Immunol 2005; 117: 133–143.

    Article  CAS  Google Scholar 

  16. Dao MA, Hannum CH, Kohn DB, Nolta JA . Flt3 ligand preserves the ability of human CD34+ progenitors to sustain long-term hematopoiesis in immune-deficient mice after ex vivo retroviral-mediated transduction. Blood 1997; 89: 446–456.

    CAS  PubMed  Google Scholar 

  17. Hanenberg H, Xiao XL, Dilloo D, Hashino K, Kato I, Williams DA . Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat Med 1996; 2: 876–882.

    Article  CAS  Google Scholar 

  18. Wu T, Kim HJ, Sellers SE, Meade KE, Agricola BA, Metzger ME et al. Prolonged high-level detection of retrovirally marked hematopoietic cells in nonhuman primates after transduction of CD34+ progenitors using clinically feasible methods. Mol Ther 2000; 1: 285–293.

    Article  CAS  Google Scholar 

  19. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–2413.

    Article  CAS  Google Scholar 

  20. Gaspar HB, Bjorkegren E, Parsley K, Gilmour KC, King D, Sinclair J et al. Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG–ADAand use of mild preconditioning. Mol Ther 2006; 14: 505–513.

    Article  CAS  Google Scholar 

  21. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    Article  CAS  Google Scholar 

  22. Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002; 346: 1185–1193.

    Article  CAS  Google Scholar 

  23. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364: 2181–2187.

    Article  CAS  Google Scholar 

  24. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  Google Scholar 

  25. Wu X, Li Y, Crise B, Burgess SM . Transcription start regions in the human genome are favored targets for MLV integration. Science 2003; 300: 1749–1751.

    Article  CAS  Google Scholar 

  26. Bushman FD . Retroviral integration and human gene therapy. J Clin Invest 2007; 117: 2083–2086.

    Article  CAS  Google Scholar 

  27. Deichmann A, Hacein-Bey-Abina S, Schmidt M, Garrigue A, Brugman MH, Hu J et al. Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J Clin Invest 2007; 117: 2225–2232.

    Article  CAS  Google Scholar 

  28. Aiuti A, Cassani B, Andolfi G, Mirolo M, Biasco L, Recchia A et al. Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy. J Clin Invest 2007; 117: 2233–2240.

    Article  CAS  Google Scholar 

  29. Schwarzwaelder K, Howe SJ, Schmidt M, Brugman MH, Deichmann A, Glimm H et al. Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. J Clin Invest 2007; 117: 2241–2249.

    Article  CAS  Google Scholar 

  30. Dave UP, Jenkins NA, Copeland NG . Gene therapy insertional mutagenesis insights. Science 2004; 303: 333.

    Article  Google Scholar 

  31. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401–409.

    Article  CAS  Google Scholar 

  32. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  Google Scholar 

  33. May C, Rivella S, Callegari J, Heller G, Gaensler KM, Luzzatto L et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 2000; 406: 82–86.

    Article  CAS  Google Scholar 

  34. Hanawa H, Hematti P, Keyvanfar K, Metzger ME, Krouse A, Donahue RE et al. Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a Simian immunodeficiency virus-based lentiviral vector system. Blood 2004; 103: 4062–4069.

    Article  CAS  Google Scholar 

  35. Levine BL, Humeau LM, Boyer J, Macgregor RR, Rebello T, Lu X et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci USA 2006; 103: 17372–17377.

    Article  CAS  Google Scholar 

  36. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006; 24: 687–696.

    Article  CAS  Google Scholar 

  37. Josephson NC, Vassilopoulos G, Trobridge GD, Priestley GV, Wood BL, Papayannopoulou T et al. Transduction of human NOD/SCID-repopulating cells with both lymphoid and myeloid potential by foamy virus vectors. Proc Natl Acad Sci USA 2002; 99: 8295–8300.

    Article  CAS  Google Scholar 

  38. Bauer Jr TR, Hai M, Tuschong LM, Burkholder TH, Gu YC, Sokolic RA et al. Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy. Blood 2006; 108: 3313–3320.

    Article  CAS  Google Scholar 

  39. Hackett PB, Ekker SC, Largaespada DA, McIvor RS . Sleeping beauty transposon-mediated gene therapy for prolonged expression. Adv Genet 2005; 54: 189–232.

    Article  CAS  Google Scholar 

  40. Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP . Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol 2001; 21: 3926–3934.

    Article  CAS  Google Scholar 

  41. Hollis RP, Nightingale SJ, Pepper KA, Yu XJ, Barsky L, Crooks GM et al. Stable gene transfer to human CD34+ hematopoietic progenitor cells using the sleeping beauty transposon. Exp Hematol 2006; 34: 1333–1343.

    Article  CAS  Google Scholar 

  42. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435: 646–651.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D B Kohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohn, D. Gene therapy for childhood immunological diseases. Bone Marrow Transplant 41, 199–205 (2008). https://doi.org/10.1038/sj.bmt.1705895

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705895

Keywords

Search

Quick links