Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cell Usage

Synergistic effects of injection of bone marrow cells into both portal vein and bone marrow on tolerance induction in transplantation of allogeneic pancreatic islets

Abstract

We have established a new method for allogeneic pancreatic islet (PI) transplantation: relatively low doses of irradiation followed by simultaneous transplantation of PIs and bone marrow cells (BMCs) via the portal vein (PV). In the present study, we have compared this method with intra-bone marrow (IBM)-bone marrow transplantation (BMT), and with a combination of both methods. Streptozotocin (STZ)-induced diabetic-recipient rats, Fischer 344 (F344, RT1Al, RT1Bl), were irradiated 1 day before transplantation. PIs of Brown Norway rats (BN, RT1An, RT1Bn) were transplanted into the liver of the diabetic F344 rats via the PV. BMCs from BN rats were injected into the recipients' bone marrow (IBM), PV or intravenously (IV) or by a simultaneous combination of PV plus IBM (PV+IBM). We compared graft survival among the groups of ‘9 Gy+IBM’(10/10 accepted), ‘9 Gy+PV’(7/10 accepted), ‘9 Gy+IV’(0/7 accepted), ‘9 Gy+PV+IBM’(8/8 accepted), ‘8.5 Gy+IBM’(4/9 accepted), ‘8.5 Gy+PV’(0/7 accepted), ‘8.5 Gy+IV’(0/7 accepted), ‘8.5 Gy+PV+IBM’(9/12 accepted), ‘8 Gy+IBM’(2/10 accepted) and ‘8 Gy+PV+IBM’(2/8 accepted). As we reported previously, PV-BMT is more effective in inducing the acceptance of allogeneic PIs than IV-BMT. However, IBM-BMT requires less pretreatment than PV-BMT. (PV+IBM)-BMT was found to be the most effective in inducing the acceptance of allogeneic PIs. These results suggest that allogeneic PI-transplantation in conjunction with (PV+IBM)-BMT could become a viable strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. National diabetes data group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 1979; 28: 1039–1057.

  2. Gepts W . Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 1965; 14: 619–633.

    Article  CAS  PubMed  Google Scholar 

  3. Ikehara S, Ohtsuki H, Good RA, Asamoto H, Nakamura T, Sekita K et al. Prevention of type I diabetes in nonobese diabetic mice by allogeneic bone marrow transplantation. Proc Natl Acad Sci USA 1985; 82: 7743–7747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Castano L, Eisenbarth GS . Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat. Annu Rev Immunol 1990; 8: 647–679.

    Article  CAS  PubMed  Google Scholar 

  5. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977–986.

  6. Wilson JD, Prowse SJ, Haynes SP . Pancreatic islet allograft function in nonimmunosuppressed conscious mice. Metabolism 1985; 34: 92–96.

    Article  CAS  PubMed  Google Scholar 

  7. Pipeleers-Marichal MA, Pipeleers DG, Cutler J, Lacy PE, Kipnis DM . Metabolic and morphologic studies in intraportal-islet-transplanted rats. Diabetes 1976; 25: 1041–1051.

    Article  CAS  PubMed  Google Scholar 

  8. Brown J, Mullen Y, Clark WR, Molnar IG, Heininger D . Importance of hepatic portal circulation for insulin action in streptozotocin-diabetic rats transplanted with fetal pancreas. J Clin Invest 1979; 64: 1688–1694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gores PF, Rabe F, Sutherland DE . Prolonged survival of intraportal versus subrenal capsular transplanted islet allografts. Transplantation 1987; 43: 747–749.

    Article  CAS  PubMed  Google Scholar 

  10. Cuthbertson RA, Mandel TE . A comparison of portal versus systemic venous drainage in murine foetal pancreatic islet transplantation. Australian J Exp Biol Med Sci 1986; 64: 175–184.

    Article  Google Scholar 

  11. Gillies MC, Mandel TE . The evolution of function and response to arginine challenge and pregnancy of portally and systemically placed islet cell grafts in streptozotocin diabetic mice. Metabolism 1990; 39: 1253–1258.

    Article  CAS  PubMed  Google Scholar 

  12. Zeng Y, Ricordi C, Tzakis A, Rilo HL, Carroll PB, Starzl TE et al. Long-term survival of donor-specific pancreatic islet xenografts in fully xenogeneic chimeras. Transplantation 1992; 53: 277–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Exner BG, Fowler K, Ildstad ST . Tolerance induction for islet transplantation. Ann Transplant 1997; 2: 77–80.

    CAS  PubMed  Google Scholar 

  14. Nakamura T, Good RA, Yasumizu R, Inoue S, Oo MM, Hamashima Y et al. Successful liver allografts in mice by combination with allogeneic bone marrow transplantation. Proc Natl Acad Sci USA 1986; 83: 4529–4532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yasumizu R, Sugiura K, Iwai H, Inaba M, Makino S, Ida T et al. Treatment of type 1 diabetes mellitus in non-obese diabetic mice by transplantation of allogeneic bone marrow and pancreatic tissue. Proc Natl Acad Sci USA 1987; 84: 6555–6557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Iwai H, Yasumizu R, Sugiura K, Inaba M, Kumazawa T, Good RA et al. Successful pancreatic allografts in combination with bone marrow transplantation in mice. Immunology 1987; 62: 457–462.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sugiura K, Kato K, Hashimoto F, Jin T, Amoh Y, Yamamoto Y et al. Induction of donor-specific T cell anergy by portal venous injection of allogeneic cells. Immunobiology 1997; 197: 460–477.

    Article  CAS  PubMed  Google Scholar 

  18. Morita H, Sugiura K, Inaba M, Jin T, Ishikawa J, Lian Z et al. A strategy for organ allografts without using immunosuppressants or irradiation. Proc Natl Acad Sci USA 1998; 95: 6947–6952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morita H, Nakamura N, Sugiura K, Satoi S, Sakakura Y, Tu W et al. Acceptance of skin allografts in pigs by portal venous injection of donor bone marrow cells. Ann Surg 1999; 230: 114–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ikebukuro K, Adachi Y, Yamada Y, Fujimoto S, Seino Y, Oyaizu H et al. Treatment of streptozotocin-induced diabetes mellitus by transplantation of islet cells plus bone marrow cells via portal vein in rats. Transplantation 2002; 73: 512–518.

    Article  PubMed  Google Scholar 

  21. Kushida T, Inaba M, Hisha H, Ichioka N, Esumi T, Ogawa R et al. Intra-bone marrow injection of allogeneic bone marrow cells: a powerful new strategy for treatment of intractable autoimmune diseases in MRL/lpr mice. Blood 2001; 97: 3292–3299.

    Article  CAS  PubMed  Google Scholar 

  22. Elias D, Prigozin H, Polak N, Rapoport M, Lohse AW, Cohen IR . Autoimmune diabetes induced by the β-cell toxin STZ. Diabetes 1994; 43: 992–998.

    Article  CAS  PubMed  Google Scholar 

  23. Miyawaki K, Yamada Y, Yano H, Niwa H, Ban N, Ihara Y et al. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci USA 1999; 96: 14843–14847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wild S, Roglic G, Green A, Sicree R, King H . Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27: 1047–1053.

    Article  PubMed  Google Scholar 

  25. Onkamo P, Vaananen S, Karvonen M, Tuomilehto J . Worldwide increase in incidence of type I diabetes – the analysis of the data on published incidence trends. Diabetologia 1999; 42: 1395–1403.

    Article  CAS  PubMed  Google Scholar 

  26. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA 2003; 290: 2159–2167.

  27. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343: 289–290.

    Article  Google Scholar 

  28. Hirshberg B, Rother KI, Digon III BJ, Lee J, Gaglia JL, Hines K et al. Benefits and risks of solitary islet transplantation for type 1 diabetes using steroid-sparing immunosuppression: the National Institutes of Health experience. Diabetes Care 2003; 26: 3288–3295.

    Article  PubMed  Google Scholar 

  29. Ikehara S, Good RA, Nakamura T, Sekita K, Inoue S, Oo MM et al. Rationale for bone marrow transplantation in the treatment of autoimmune diseases. Proc Natl Acad Sci USA 1985; 82: 2483–2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oyaizu N, Yasumizu R, Miyama-Inaba M, Nomura S, Yoshida H, Miyawaki S et al. (NZW × BXSB)F1 mouse. A new animal model of idiopathic thrombocytopenic purpura. J Exp Med 1988; 167: 2017–2022.

    Article  CAS  PubMed  Google Scholar 

  31. Ikehara S, Yasumizu R, Inaba M, Izui S, Hayakawa K, Sekita K et al. Long-term observations of autoimmune-prone mice treated for autoimmune disease by allogeneic bone marrow transplantation. Proc Natl Acad Sci USA 1989; 86: 3306–3310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ishida T, Inaba M, Hisha H, Sugiura K, Adachi Y, Nagata N et al. Requirement of donor-derived stromal cells in the bone marrow for successful allogeneic bone marrow transplantation. Complete prevention of recurrence of autoimmune diseases in MRL/MP-Ipr/Ipr mice by transplantation of bone marrow plus bones (stromal cells) from the same donor. J Immunol 1994; 152: 3119–3127.

    CAS  PubMed  Google Scholar 

  33. Adachi Y, Inaba M, Amoh Y, Yoshifusa H, Nakamura Y, Suzuka H et al. Effect of bone marrow transplantation on antiphospholipid antibody syndrome in murine lupus mice. Immunobiology 1995; 192: 218–230.

    Article  CAS  PubMed  Google Scholar 

  34. Yin JA, Jowitt SN . Resolution of immune-mediated diseases following allogeneic bone marrow transplantation for leukaemia. Bone Marrow Transplant 1992; 9: 31–33.

    CAS  PubMed  Google Scholar 

  35. Burt RK, Traynor AE, Craig R, Marmont AM . The promise of hematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transplant 2003; 31: 521–524.

    Article  CAS  PubMed  Google Scholar 

  36. Marmont AM . Immune ablation followed by allogeneic or autologous bone marrow transplantation: a new treatment for severe autoimmune diseases? Stem Cells 1994; 12: 125–135.

    Article  CAS  PubMed  Google Scholar 

  37. Jin T, Toki J, Inaba M, Sugiura K, Fan T, Yu C et al. A novel strategy for organ allografts using sublethal (7 Gy) irradiation followed by injection of donor bone marrow cells via portal vein. Transplantation 2001; 71: 1725–1781.

    Article  CAS  PubMed  Google Scholar 

  38. Esumi T, Inaba M, Ichioka N, Kushida T, Iida H, Ikehara S . Successful allogeneic leg transplantation in rats in conjunction with intra-bone marrow injection of donor bone marrow cells. Transplantation 2003; 76: 1543–1548.

    Article  CAS  PubMed  Google Scholar 

  39. Kaneda H, Adachi Y, Saito Y, Ikebukuro K, Machida H, Minamino K et al. Long-term observation after simultaneous lung and intra-bone marrow-bone marrow transplantation. J Heart Lung Transpl 2005; 24: 1415–1423.

    Article  Google Scholar 

  40. Pham SM, Mitruka SN, Youm W, Li S, Kawaharada N, Yousem SA et al. Mixed hematopoietic chimerism induces donor-specific tolerance for lung allografts in rodents. Am J Respir Crit Care Med 1999; 159: 199–205.

    Article  CAS  PubMed  Google Scholar 

  41. Foster RD, Ascher NL, McCalmont TH, Neipp M, Anthony JP, Mathes SJ . Mixed allogenic chimerism as a reliable model for composite tissue allograft tolerance induction across major and minor histocompatibility barriers. Transplantation 2001; 72: 791–797.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms Y Tokuyama, Ms M Murakami-Shinkawa, Ms S Miura, Ms K Hayashi and Ms A Kitajima for their expert technical assistance, and also Mr Hilary Eastwick-Field and Ms K Ando for the preparation of this manuscript. Grant support: ‘Gakunai Zyosei’ in Kansai Medical University, a grant from the ‘Haiteku Research Center’ of the Ministry of Education, a grant from ‘Millennium’ of the Ministry of Education, Culture, Sports, Science and Technology, grant-in-aid for scientific research (B) 11470062, grants-in-aid for scientific research on priority areas (A) 10181225 and (A) 1162221, and Health and Labor Science research grants (Research on Human Genome, Tissue Engineering Food Biotechnology), a grant from the ‘Science Frontier’ program of the Ministry of Education, Culture, Sports, Science and Technology, a grant from the ‘The 21st Century COE Program’ of the Ministry of Education, Culture, Sports, Science and Technology, and also a grant from the Department of Transplantation for Regeneration Therapy (sponsored by Otsuka Pharmaceutical Company Ltd.), a grant from Molecular Medical Science Institute, Otsuka Pharmaceutical Co., Ltd., as well as a grant from Japan Immunoresearch Laboratories Co., Ltd (JIMRO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Ikehara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikebukuro, K., Adachi, Y., Suzuki, Y. et al. Synergistic effects of injection of bone marrow cells into both portal vein and bone marrow on tolerance induction in transplantation of allogeneic pancreatic islets. Bone Marrow Transplant 38, 657–664 (2006). https://doi.org/10.1038/sj.bmt.1705500

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705500

Keywords

This article is cited by

Search

Quick links