Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cell Procurement

A randomized study comparing filgrastim versus lenograstim versus molgramostim plus chemotherapy for peripheral blood progenitor cell mobilization

Abstract

We conducted a prospective randomized clinical trial to assess the mobilizing efficacy of filgrastim, lenograstim and molgramostim following a disease-specific chemotherapy regimen. Mobilization consisted of high-dose cyclophosphamide in 45 cases (44%), and cisplatin/ifosfamide/etoposide or vinblastine in 22 (21%), followed by randomization to either filgrastim or lenograstim or molgramostim at 5 μg/kg/day. One hundred and three patients were randomized, and 82 (79%) performed apheresis. Forty-four (43%) patients were chemonaive, whereas 59 (57%) were pretreated. A median number of one apheresis per patient (range, 1–3) was performed. The median number of CD34+ cells obtained after mobilization was 8.4 × 106/kg in the filgrastim arm versus 5.8 × 106/kg in the lenograstim arm versus 4.0 × 106/kg in the molgramostim arm (P=0.1). A statistically significant difference was observed for the median number of days of growth factor administration in favor of lenograstim (12 days) versus filgrastim (13 days) and molgramostim (14 days) (P<0.0001) and for the subgroup of chemonaive patients (12 days) versus pretreated patients (14 days) (P<0.001). In conclusion, all three growth factors were efficacious in mobilizing peripheral blood progenitor cells with no statistically significant difference between CD34+ cell yield and the different regimens, and the time to apheresis is likely confounded by the different mobilization regimens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gratwohl A, Baldomero H, Demirer T, Rosti G, Dini G, Ladenstein R et al. Hematopoietic stem cell transplantation for solid tumors in Europe. Ann Oncol 2004; 15: 653–660.

    Article  CAS  Google Scholar 

  2. Demirer T, Buckner CD, Bensinger WI . Optimization of peripheral blood stem cell mobilization. Stem Cells 1996; 14: 106–116.

    Article  CAS  Google Scholar 

  3. De Giorgi U, Rosti G, Zaniboni A, Ballardini M, Minzi MR, Baioni M et al. High-dose epirubicin, preceded by dexrazoxane, given in combination with paclitaxel plus filgrastim provides an effective mobilizing regimen to support three courses of high-dose dense chemotherapy in patients with high-risk stage II–IIIA breast cancer. Bone Marrow Transplant 2003; 32: 251–255.

    Article  CAS  Google Scholar 

  4. De Giorgi U, Rosti G, Papiani G, Marangolo M . The status of high-dose chemotherapy with hematopoietic stem cell transplantation in germ cell tumor patients. Haematologica 2002; 87: 95–104.

    CAS  PubMed  Google Scholar 

  5. Siena S, Schiavo R, Pedrazzoli P, Carlo-Stella C . Therapeutic relevance of CD 34+ cell dose in blood cell transplantation for cancer therapy. J Clin Oncol 2000; 18: 1360–1377.

    Article  CAS  Google Scholar 

  6. Hoeglund M, Smedmyr B, Bengtsson M, Toetterman TH, Yver A, Cour-Chabernaud V et al. Mobilization of CD34+ cells by glycosylated and nonglycosylated G-CSF in healthy volunteers – a comparative study. Eur J Haematol 1997; 59: 177–183.

    Article  Google Scholar 

  7. Gianni AM, Siena S, Bregni M, Di Nicola M, Orefice S, Cusumano F et al. Granulocyte–macrophage colony stimulating factor to harvest circulating hemopoietic stem cells for autotransplantation. Lancet 1989; 2: 580–585.

    Article  CAS  Google Scholar 

  8. Bregni M, Siena S, Di Nicola M, Dodero A, Peccatori F, Ravagnani F et al. Comparative effects of granulocyte–macrophage colony stimulating factor and of granulocyte colony stimulating factor after high-dose cyclofosfamide cancer therapy. J Clin Oncol 1996; 14: 628–635.

    Article  CAS  Google Scholar 

  9. Dazzi C, Cariello A, Giovanis P, Monti M, Vertogen B, Leoni M et al. Prophylaxis with GM-CSF mouthwashes does not reduce frequency and duration of severe oral mucositis in patients with solid tumors undergoing high-dose chemotherapy with autologous peripheral stem cell transplantation rescue: a double blind, randomized, placebo-controlled study. Ann Oncol 2003; 14: 559–563.

    Article  CAS  Google Scholar 

  10. Correale P, Campoccia G, Tsang KY, Micheli L, Cusi MG, Sabatino M et al. Recruitment of dendritic cells and enhanced antigen-specific immune reactivity in cancer patients treated with hr-GM-CSF (molgramostim) and hr-IL-2. Results from a phase Ib clinical trial. Eur J Cancer 2001; 37: 892–902.

    Article  CAS  Google Scholar 

  11. Bengala C, Pazzaglia F, Tibaldi C, Favre C, Vanacore R, Greco F et al. Mobilization, collection, and characterization of peripheral blood hemopoietic progenitors after chemotherapy with epirubicin, paclitaxel and granulocyte-colony stimulating factor administered to patients with metastatic breast carcinoma. Cancer 1998; 82: 867–873.

    Article  CAS  Google Scholar 

  12. Pedrazzoli P, Ferrante P, Kulekci A, Schiavo R, De Giorgi U, Carminati O et al. Autologous hematopoietic stem cell transplantation for breast cancer in Europe: critical evaluation of data from the European Group for Blood and Marrow Transplantation (EBMT) Registry 1990–1999. Bone Marrow Transplant 2003; 32: 489–494.

    Article  CAS  Google Scholar 

  13. Siegel S, Castellan Jr NJ . Statistica Non Parametrica, 2nd edn. McGraw-Hill: New York, 1992.

    Google Scholar 

  14. Armitage P, Berry G . Statistical Methods in Medical Research, 2nd edn. Blackwell Scientific Publications: Cambridge, MA, 1987.

    Google Scholar 

  15. SAS Institute Inc. SAS/STAT User's Guide, version 8.02, vol. 1. SAS Institute: Cary, NC, 1989.

  16. Seggewiss R, Buss EC, Herrmann D, Goldschmidt H, Ho AD, Fruehauf S . Kinetics of peripheral blood stem cell mobilization following G-CSF-supported chemotherapy. Stem Cells 2003; 21: 568–574.

    Article  CAS  Google Scholar 

  17. Milone G, Leotta S, Indelicato F, Mercurio S, Moschetti G, Di Raimondo F et al. G-CSF alone vs cyclophosphamide plus G-CSF in PBPC mobilization of patients with lymphoma: results depend on degree of previous pretreatment. Bone Marrow Transplant 2003; 31: 747–754.

    Article  CAS  Google Scholar 

  18. Goterris R, Hernandez-Boluda JC, Teruel A, Gomez C, Lis MJ, Terol MJ et al. Impact of different strategies of second-line stem cell harvest on the outcome of autologous transplantation in poor peripheral blood stem cell mobilizers. Bone Marrow Transplant 2005; 36: 847–853.

    Article  CAS  Google Scholar 

  19. Andre M, Baudoux E, Bron D, Canon JL, D’Hondt V, Fassotte MF et al. Phase III randomized study comparing 5 or 10 microg per kg per day of filgrastim for mobilization of peripheral blood progenitor cells with chemotherapy, followed by intensification and autologous transplantation in patients with nonmyeloid malignancies. Transfusion 2003; 43: 50–57.

    Article  CAS  Google Scholar 

  20. Kim S, Kim HJ, Park JS, Lee J, Chi HS, Park CJ et al. Prospective randomized comparative observation of single- vs split-dose lenograstim to mobilize peripheral blood progenitor cells following chemotherapy in patients with multiple myeloma or non-Hodgkin's lymphoma. Ann Hematol 2005; 84: 742–747.

    Article  CAS  Google Scholar 

  21. Dazzi C, Cariello A, Rosti G, Monti G, Sebastiani L, Argnani M et al. Peripheral blood progenitor cell (PBPC) mobilization in heavily pretreated patients with germ cell tumours: e report of 34 cases. Bone Marrow Transplant 1999; 23: 529–532.

    Article  CAS  Google Scholar 

  22. Olivieri A, Brunori M, Capelli D, Montanari M, Massidda D, Gini G et al. Salvage therapy with an outpatient DHAP schedule followed by PBSC transplantation in 79 lymphoma patients: an intention to mobilize and transplant analysis. Eur J Haematol 2004; 72: 10–17.

    Article  Google Scholar 

  23. Arora M, Burns LJ, Barker JN, Miller JS, Defor TE, Olujohungbe AB et al. Randomized comparison of granulocyte colony-stimulating factor versus granulocyte–macrophage colony-stimulating factor plus intensive chemotherapy for peripheral blood stem cell mobilization and autologous transplantation in multiple myeloma. Biol Blood Marrow Transplant 2004; 10: 395–404.

    Article  CAS  Google Scholar 

  24. Lonial S, Hicks M, Rosenthal H, Langston A, Redei I, Torre C et al. A randomized trial comparing the combination of granulocyte–macrophage colony-stimulating factor plus granulocyte colony-stimulating factor versus granulocyte colony-stimulating factor for mobilization of dendritic cell subsets in hematopoietic progenitor cell products. Biol Blood Marrow Transplant 2004; 10: 848–857.

    Article  CAS  Google Scholar 

  25. Spitzer G, Adkins D, Mathews M, Velasquez W, Bowers C, Dunphy F et al. Randomized comparison of G-CSF + GM-CSF vs G-CSF alone for mobilization of peripheral blood stem cells: effects on hematopoietic recovery after high-dose chemotherapy. Bone Marrow Transplant 1997; 20: 921–930.

    Article  CAS  Google Scholar 

  26. Yu J, Leisenring W, Bensinger WI, Holmberg LA, Rowley SD . The predictive value of white cell or CD34+ cell count in the peripheral blood for timing apheresis and maximizing yield. Transfusion 1999; 39: 442–450.

    Article  CAS  Google Scholar 

  27. Demirer T, Ilhan O, Ayli M, Arat M, Dagli M, Ozcan M et al. Monitoring of peripheral blood CD34+ cell counts on the first day of apheresis is highly predictive for efficient CD34+ cell yield. Ther Apher 2002; 6: 384–389.

    Article  Google Scholar 

  28. Marques JFC, Vigorito AC, Aranha FJP, Lorand-Metz I, Miranda ECM, Lima Filho EC et al. Early total white blood cell recovery is a predictor of low number of apheresis and good CD34+ cell yield. Transfus Sci 2000; 23: 91–100.

    Article  CAS  Google Scholar 

  29. Steidl U, Fenk R, Bruns I, Neuman F, Kondakci M, Hoyer B et al. Successful transplantation of peripheral blood stem cells mobilized by chemotherapy and a single dose of pegylated G-CSF in patients with multiple myeloma. Bone Marrow Transplant 2005; 35: 33–36.

    Article  CAS  Google Scholar 

  30. Bruns I, Steidl U, Kronenwett R, Fenk R, Graef T, Rohr UP et al. A single dose of 6 or 12 mg of pegfilgrastim for peripheral blood progenitor cell mobilization results in similar yields of CD34+ progenitors in patients with multiple myeloma. Transfusion 2006; 46: 180–185.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a special grant from Istituto Oncologico Romagnolo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Kopf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopf, B., De Giorgi, U., Vertogen, B. et al. A randomized study comparing filgrastim versus lenograstim versus molgramostim plus chemotherapy for peripheral blood progenitor cell mobilization. Bone Marrow Transplant 38, 407–412 (2006). https://doi.org/10.1038/sj.bmt.1705465

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705465

Keywords

This article is cited by

Search

Quick links