Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cell Procurement

Progenitor cells trapped in marrow filters can reduce GvHD and transplant mortality

Abstract

A bone marrow harvest is filtered either in the operating room, in the laboratory or during infusion to the patient. Filters are usually discarded. Little is known of haemopoietic progenitor cells (HPCs) trapped in the filters. The aim of the study was to evaluate HPC content in the filters and to assess the outcome of transplants with filter-discarded or filter-recovered cells. Haemopoietic progenitors were grown from filters of 19 marrow transplants. We then compared the outcome of 39 filter-recovered transplants from HLA-identical siblings (years 2001–2004) with a matched cohort of 43 filter-discarded marrow grafts (years 1997–2000). Filters contained on average 21% long-term culture-initiating cells (LTC-IC) and 15% fibroblasts colony-forming units (CFU-F) of the total progenitor cell content. Filter-discarded transplants had significantly more grade II–IV graft-versus-host disease (GvHD) (42 vs 15%, P=0.008) as compared to filter-recovered transplants, and more transplant-related mortality (TRM) (20 vs 3%, P=0.04). The actuarial survival at 5 years is 69 vs 87%, respectively (P=0.15). This study suggests that a significant proportion of LTC-IC is lost in the filters together with CFU-F. Recovery and add back of progenitors trapped in the filters may reduce GvHD and TRM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Storb R, Prentice RL, Thomas ED . Marrow transplantation for treatment of aplastic anemia. An analysis of factors associated with graft rejection. N Engl J Med 1977; 296: 61–66.

    Article  CAS  PubMed  Google Scholar 

  2. Dominietto A, Raiola AM, van Lint MT, Lamparelli T, Gualandi F, Berisso G et al. Factors influencing hematologic recovery after allogeneic hemopoietic stem cells transplant (HSCT): graft-versus-host disease, donor type, cytomegalovirus infections and cell dose. Br J Haematol 2001; 112: 219–227.

    Article  CAS  PubMed  Google Scholar 

  3. Sierra J, Storer B, Hansen JA, Bjerke JW, Martin PJ, Petersdorf EW et al. Transplantation of marrow cells from unrelated donors for treatment of high-risk acute leukemia: the effect of leukemic burden, donor HLA-matching and marrow cell dose. Blood 1997; 89: 4226–4235.

    CAS  PubMed  Google Scholar 

  4. Gorin NC, Labopin M, Rocha V, Arcese W, Beksac M, Gluckman E et al. Marrow versus peripheral blood for geno-identical allogeneic stem cell transplantation in acute myelocytic leukemia: influence of dose and stem cell source shows better outcome with rich marrow. Blood 2003; 102: 3043–3051.

    Article  CAS  PubMed  Google Scholar 

  5. Dao M, Verfaillie CM . Bone marrow microenvironment. In: Hoffman R et al. (eds). Hematology: Basic Principles and Practice, 4th edn. Elsevier Inc.: Churchill-Livingstone, Philadelphia, 2005, pp 215–231.

    Google Scholar 

  6. Blazsek I, Misset JL, Benavides M . Hematon, a multicellular functional unit in normal human bone marrow: structural organization, haemopoietic activity and its relationship to myelodysplasia and myeloid leukemias. Exp Hematol 1990; 18: 259–265.

    CAS  PubMed  Google Scholar 

  7. Blazsek I, Lui X, Anjo A, Quittet P, Comisso M, Kim-Triana B et al. The haematon, a morphogenetic functional complex in mammalian bone marrow involves erythroblastic islands and granulocytic cobblestones. Exp Hematol 1995; 23: 309–319.

    CAS  PubMed  Google Scholar 

  8. Bacigalupo A, Tong J, Podestà M, Piaggio G, Figari O, Colombo P et al. Bone marrow harvest for marrow transplantation: effect of multiple small (2 ml) or large (20 ml) aspirates. Bone Marrow Transplant 1992; 9: 467–470.

    CAS  PubMed  Google Scholar 

  9. Podestà M, Piaggio G, Frassoni F, Pitto A, Zikos P, Sessarego M et al. The assessment of the hematopoietic reservoir after immunosuppressive therapy or bone marrow transplantation in severe aplastic anemia. Blood 1998; 91: 1959–1965.

    PubMed  Google Scholar 

  10. Glucksberg H, Storb R, Fefer A, Bucker CD, Neiman PE, Clift RA et al. Clinical manifestations of acute graft-versus-host disease in human recipients of marrow from HLA-matched sibling donors. Transplantation 1974; 18: 295–304.

    Article  CAS  PubMed  Google Scholar 

  11. Lee SJ, Vogelsang G, Flowers ME . Chronic graft versus host disease. Biol Blood Marrow Transplant 2003; 9: 215–233.

    Article  CAS  PubMed  Google Scholar 

  12. Blazek I, Marsalet BD, Legras S, Marion S, Machover D, Misset JL . Large scale recovery and characterization of stromal cell-associated primitive haemopoietic progenitor cells from filter-retained human bone marrow. Bone Marrow Transplant 1999; 23: 647–657.

    Article  Google Scholar 

  13. Bacigalupo A, Oneto R, Bruno B, Lamparelli T, Gualandi F, Bregante S et al. Serum cholinesterase is an early marker of graft versus host disease (GvHD) and transplant related mortality (TRM). Bone Marrow Transplant 2001; 28: 1041–1045.

    Article  CAS  PubMed  Google Scholar 

  14. Klyushnenkova EN, Mosca J, McIntosh KR . Human mesenchymal stem cells suppress allogeneic T cell responses in vitro: implications for allogeneic transplantation. Blood 1998; 92: 642a.

    Google Scholar 

  15. Tse WT, Beyer W, Pendleton JD, D'Andrea A, Guinan EC . Bone marrow derived mesenchymal stem cells suppress T cell activation without inducing allogeneic anergy. Blood 2000; 96: 1034a.

    Google Scholar 

  16. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30: 42–48.

    Article  PubMed  Google Scholar 

  17. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O . Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57: 11–20.

    Article  CAS  PubMed  Google Scholar 

  18. Maitra B, Szekely E, Gjini K, Laughlin MJ, Dennis J, Haynesworth SE et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant 2004; 33: 597–604.

    Article  CAS  PubMed  Google Scholar 

  19. Aggarwal S, Pittenger MF . Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

    Article  CAS  PubMed  Google Scholar 

  20. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838–3843.

    Article  CAS  PubMed  Google Scholar 

  21. Ringden O, Frassoni F, Uzunel M, Lanino E, Sundberg B, Lonnies H et al. Mesenchymal stem cells for treatment of severe acute and extensive chronic graft-versus-host disease. Bone Marrow Transplant 2006; 37 (Suppl 1): S1 (abstr.).

    Google Scholar 

  22. El-Badri NS, Wang BY, Cherry, Good RA . Osteoblasts promote engraftment of allogeneic hematopoietic stem cells. Exp Hematol 1998; 26: 110–116.

    CAS  PubMed  Google Scholar 

  23. Pittenger MF, MacKay AM, Beck C . Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–145.

    Article  CAS  PubMed  Google Scholar 

  24. Tomita S, Li RK, Weisel RD, Mickel DA, Kim EJ, Sakai T et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999; 100 (Suppl II): II247–II256.

    CAS  PubMed  Google Scholar 

  25. Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kaiyala S . Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 1998; 16: 155–162.

    Article  CAS  PubMed  Google Scholar 

  26. Lazarus HM, Koc ON, Devine SM, Curtin P, Maziarz RT, Holland K et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005; 11: 389–398.

    Article  PubMed  Google Scholar 

  27. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cell. Lancet 2004; 363: 1439–1441.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Fondazione CARIGE Genova, Associazione Italiana Ricerca contro il Cancro (AIRC) Milano and Associazione Ricerca Trapianto Midollo Osseo (ARITMO) Genova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Vicente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicente, D., Podestà, M., Pitto, A. et al. Progenitor cells trapped in marrow filters can reduce GvHD and transplant mortality. Bone Marrow Transplant 38, 111–117 (2006). https://doi.org/10.1038/sj.bmt.1705413

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705413

Keywords

This article is cited by

Search

Quick links