Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Depletion of alloreactive T cells via CD69: implications on antiviral, antileukemic and immunoregulatory T lymphocytes

Abstract

Selective depletion of alloreactive T cells from stem-cell allografts should abrogate graft-versus-host disease while preserving beneficial T cell specificities to facilitate engraftment and immune reconstitution. We therefore explored a refined immunomagnetic separation strategy to effectively deplete alloreactive donor lymphocytes expressing the activation antigen CD69 upon stimulation, and examined the retainment of antiviral, antileukemic, and immunoregulatory T cells. In addition to the CD69high T cell fraction, our studies retrieved two T cell subsets based on residual CD69 expression. Whereas, truly CD69neg cells were devoid of detectable alloresponses to original stimulators, CD69-low (CD69low)-expressing T cells elicited significant residual alloreactivity upon restimulation. In interferon-γ enzyme linked immunospot assays, anti-cytomegalovirus and anti-Epstein–Barr virus responses were preserved at significant numbers among CD69neg T lymphocytes. Accordingly, T cells recognizing the leukemia-associated Wilm's tumor-1 antigen were still detectable in the CD69neg subset. However, antiviral and antileukemic specificities were also consistently found within CD69low T cells, suggesting that memory-type donor T cells were partially captured due to residual CD69 expression. Finally, CD4+CD25+ Foxp3+ immunoregulatory T cells did not upregulate CD69 upon allogeneic stimulation. Our data suggest that CD69-mediated removal of alloreactivity can result in efficient allodepletion, but may partially affect the persistence of antiviral and antileukemic donor memory specificities captured among CD69low-expressing lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Martin PJ . Donor CD8 cells prevent allogeneic marrow graft rejection in mice: potential implications for marrow transplantation in humans. J Exp Med 1993; 178: 703–712.

    Article  CAS  Google Scholar 

  2. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD . Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T-cell clones. Science 1992; 257: 238–241.

    Article  CAS  Google Scholar 

  3. Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990; 76: 2462–2465.

    CAS  Google Scholar 

  4. Goldman JM, Gale RP, Horowitz MM, Biggs JC, Champlin RE, Gluckman E et al. Bone marrow transplantation for chronic myelogenous leukemia in chronic phase. Increased risk for relapse associated with T-cell depletion. Ann Intern Med 1988; 108: 806–814.

    Article  CAS  Google Scholar 

  5. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990; 75: 555–562.

    CAS  Google Scholar 

  6. Ferrara JL, Levy R, Chao NJ . Pathophysiologic mechanisms of acute graft-vs-host disease. Biol Blood Marrow Transplant 1999; 5: 347–356.

    Article  CAS  Google Scholar 

  7. Hartwig UF, Robbers M, Wickenhauser C, Huber C . Murine acute graft-versus-host disease can be prevented by depletion of alloreactive T lymphocytes using activation-induced cell death. Blood 2002; 99: 3041–3049.

    Article  CAS  Google Scholar 

  8. Yang YG, Qi J, Wang MG, Sykes M . Donor-derived interferon gamma separates graft-versus-leukemia effects and graft-versus-host disease induced by donor CD8 T cells. Blood 2002; 99: 4207–4215.

    Article  CAS  Google Scholar 

  9. Slavin S, Morecki S, Weiss L, Or R . Immunotherapy of hematologic malignancies and metastatic solid tumors in experimental animals and man. Crit Rev Oncol Hematol 2003; 46: 139–163.

    Article  Google Scholar 

  10. Gao L, Yang TH, Tourdot S, Sadovnikova E, Hasserjian R, Stauss HJ . Allo-major histocompatibility complex-restricted cytotoxic T lymphocytes engraft in bone marrow transplant recipients without causing graft-versus-host disease. Blood 1999; 94: 2999–3006.

    CAS  PubMed  Google Scholar 

  11. Barrett AJ, Malkovska V . Graft-versus-leukaemia: understanding and using the alloimmune response to treat haematological malignancies. Br J Haematol 1996; 93: 754–761.

    Article  CAS  Google Scholar 

  12. Chen BJ, Cui X, Liu C, Chao NJ . Prevention of graft-versus-host disease while preserving graft-versus-leukemia effect after selective depletion of host-reactive T-cells by photodynamic cell purging process. Blood 2002; 99: 3083–3088.

    Article  CAS  Google Scholar 

  13. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997; 276: 1719–1724.

    Article  CAS  Google Scholar 

  14. Mavroudis DA, Dermime S, Molldrem J, Jiang YZ, Raptis A, van Rhee F et al. Specific depletion of alloreactive T-cells in HLA-identical siblings: a method for separating graft-versus-host and graft-versus-leukaemia reactions. Br J Haematol 1998; 101: 565–570.

    Article  CAS  Google Scholar 

  15. Andre-Schmutz I, Le Deist F, Hacein-Bey-Abina S, Vitetta E, Schindler J, Chedeville G et al. Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet 2002; 360: 130–137.

    Article  Google Scholar 

  16. Amrolia PJ, Muccioli-Casadei G, Yvon E, Huls H, Sili U, Wieder ED et al. Selective depletion of donor alloreactive T-cells without loss of antiviral or antileukemic responses. Blood 2003; 102: 2292–2299.

    Article  CAS  Google Scholar 

  17. Garderet L, Snell V, Przepiorka D, Schenk T, Lu JG, Marini F et al. Effective depletion of alloreactive lymphocytes from peripheral blood mononuclear cell preparations. Transplantation 1999; 67: 124–130.

    Article  CAS  Google Scholar 

  18. Koh MB, Prentice HG, Lowdell MW . Selective removal of alloreactive cells from haematopoietic stem cell grafts: graft engineering for GVHD prophylaxis. Bone Marrow Transplant 1999; 23: 1071–1079.

    Article  CAS  Google Scholar 

  19. Fehse B, Frerk O, Goldmann M, Bulduk M, Zander AR . Efficient depletion of alloreactive donor T lymphocytes based on expression of two activation-induced antigens (CD25 and CD69). Br J Hematol 2000; 109: 644–651.

    Article  CAS  Google Scholar 

  20. Martins SL, St John LS, Champlin RE, Wieder ED, McMannis J, Molldrem JJ et al. Functional assessment and specific depletion of alloreactive human T cells using flow cytometry. Blood 2004; 104: 3429–3436.

    Article  CAS  Google Scholar 

  21. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S . Donor-type CD4(+) CD25(+) regulatory T-cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 2002; 196: 389–399.

    Article  CAS  Google Scholar 

  22. Salter RD, Howell DN, Cresswell P . Genes regulating HLA class I antigen expression in T-B lymphoblast hybrids. Immunogenetics 1985; 21: 235–246.

    Article  CAS  Google Scholar 

  23. Britten CM, Meyer RG, Kreer T, Drexler I, Wolfel T, Herr W . The use of HLA-A*0201-transfected K562 as standard antigen-presenting cells for CD8(+) T lymphocytes in IFN-gamma ELISPOT assays. J Immunol Methods 2002; 259: 95–110.

    Article  CAS  Google Scholar 

  24. Nagorsen D, Scheibenbogen C, Marincola FM, Letsch A, Keilholz U . Natural T-cell immunity against cancer. Clin Cancer Res 2003; 9: 4296–4303.

    CAS  PubMed  Google Scholar 

  25. Gao L, Bellantuono I, Elsasser A, Marley SB, Gordon MY, Goldman JM et al. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 2000; 95: 2198–2203.

    CAS  PubMed  Google Scholar 

  26. Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S et al. CD4+ CD25+ regulatory T-cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 2003; 9: 1144–1150.

    Article  CAS  Google Scholar 

  27. Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G, Edwards AD et al. Human CD4(+) CD25(+) cells: a naturally occurring population of regulatory T-cells. Blood 2001; 98: 2736–2744.

    Article  CAS  Google Scholar 

  28. Levings MK, Sangregorio R, Roncarolo MG . Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T-cell proliferation and can be expanded in vitro without loss of function. J Exp Med 2001; 193: 1295–1302.

    Article  CAS  Google Scholar 

  29. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.

    Article  CAS  Google Scholar 

  30. Gribben JG, Guinan EC, Boussiotis VA, Ke XY, Linsley L, Sieff C et al. Complete blockade of B7 family-mediated costimulation is necessary to induce human alloantigen-specific anergy: a method to ameliorate graft-versus-host disease and extend the donor pool. Blood 1996; 87: 4887–4893.

    CAS  PubMed  Google Scholar 

  31. Craston R, Koh M, Mc Dermott A, Ray N, Prentice HG, Lowdell MW . Temporal dynamics of CD69 expression on lymphoid cells. J Immunol Methods 1997; 209: 37–45.

    Article  CAS  Google Scholar 

  32. Riddell SR, Greenberg PD . T-cell therapy of human CMV and EBV infection in immunocompromised hosts. Rev Med Virol 1997; 7: 181–192.

    Article  CAS  Google Scholar 

  33. Kolb HJ, Schmid C, Barrett AJ, Schendel DJ . Graft-versus-leukemia reactions in allogeneic chimeras. Blood 2004; 103: 767–776.

    Article  CAS  Google Scholar 

  34. Inoue K, Ogawa H, Sonoda Y, Kimura T, Sakabe H, Oka Y et al. Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia. Blood 1997; 89: 1405–1412.

    CAS  PubMed  Google Scholar 

  35. Dunn HS, Douglas JH, Ghansekar SA, Stepick-Biek P, Lewis DB, Maecker HT . Dynamics of CD4 and CD8 T-cell responses to cytomegalovirus in healthy human donors. J Infect Dis 2002; 186: 15–22.

    Article  CAS  Google Scholar 

  36. Tan LC, Mowat AG, Fazou C, Rostron T, Roskell H, Dunbar PR et al. Specificity of T-cells in synovial fluid: high frequencies of CD8+ T-cells that are specific for certain viral epitopes. Arthritis Res 2000; 2: 154–164.

    Article  CAS  Google Scholar 

  37. Wood KJ, Sakaguchi S . Regulatory T-cells in transplantation tolerance. Nat Rev Immunol 2003; 3: 199–210.

    Article  CAS  Google Scholar 

  38. Shevach EM . Certified professionals: CD4(+) CD25(+) suppressor T-cells. J Exp Med 2001; 193: 41–46.

    Article  Google Scholar 

  39. Davies JK, Koh MB, Lowdell M . Antiviral immunity and T-regulatory cell function are retained after selective alloreactive T-cell depletion in both the HLA-identical and HLA-mismatched settings. Biol Blood Marrow Transplant 2004; 10: 259–268.

    Article  CAS  Google Scholar 

  40. Riddell SR, Greenberg PD . The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T-cells. J Immunol Methods 1990; 128: 189–201.

    Article  CAS  Google Scholar 

  41. Rauser G, Einsele H, Sinzger C, Wernet D, Kuntz G, Assenmacher M et al. Rapid generation of combined CMV specific CD4+ and CD8+ cell lines for adoptive transfer into recipients of allogeneic stem cell transplants. Blood 2004; 103: 3565–3572.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the German Cancer Aid (Deutsche Krebshilfe; Projects 70-3344-IIA and IVB), and by a grant from the MAIFOR program of Mainz University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U F Hartwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartwig, U., Nonn, M., Khan, S. et al. Depletion of alloreactive T cells via CD69: implications on antiviral, antileukemic and immunoregulatory T lymphocytes. Bone Marrow Transplant 37, 297–305 (2006). https://doi.org/10.1038/sj.bmt.1705238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705238

Keywords

This article is cited by

Search

Quick links