Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Graft-Versus-Host Disease

Keratinocyte growth factor ameliorates acute graft-versus-host disease in a novel nonmyeloablative haploidentical transplantation model

Summary:

Allogeneic stem cell transplantations (SCT) are currently being used as a therapy for hematological malignancies, some solid tumors and nonmalignant bone marrow deficiencies. Nevertheless, clinical applicability is limited due to toxicity of conditioning regimens, graft-versus-host disease (GVHD) and the scarcity of HLA-identical family donors. New concepts are based on nonmyeloablative conditioning to reduce toxicity, prevention or amelioration of GVHD and the use of haploidentical donors to increase donor availability. To combine these requirements, we have developed a nonmyeloablative conditioning regimen, consisting of low-dose total body irradiation and cyclophosphamide-based chemotherapy. In a haploidentical F1 → F1 mouse model, this nonmyeloablative transplantation protocol resulted in stable full donor chimerism, but also in the development of severe GVHD. Administration of keratinocyte growth factor (KGF) reduced GVHD, evident as reduced weight loss and a lesser degree of dermatitis, compared to saline-treated controls. KGF preserved plasma citrulline and tumor necrosis factor-α levels, both indicative for reduced injury to the gastrointestinal tract. This was confirmed by histological findings. At 6 months after transplantation, survival rates were significantly higher in KGF-treated animals as compared to phosphate buffered saline-treated controls. These results indicate that KGF preserves gut integrity and might therefore contribute substantially to reduction of lethal GVHD in (nonmyeloablative) haploidentical transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Beatty PG, Mori M, Milford E . Impact of racial genetic polymorphism on the probability of finding an HLA-matched donor. Transplantation 1995; 60: 778–783.

    Article  CAS  PubMed  Google Scholar 

  2. Henslee-Downey PJ, Abhyankar SH, Parrish RS et al. Use of partially mismatched related donors extends access to allogeneic marrow transplant. Blood 1997; 89: 3864–3872.

    CAS  PubMed  Google Scholar 

  3. Beatty PG, Clift RA, Mickelson EM et al. Marrow transplantation from related donors other than HLA-identical siblings. N Engl J Med 1985; 313: 765–771.

    Article  CAS  PubMed  Google Scholar 

  4. Ferrara JL, Levy R, Chao NJ . Pathophysiologic mechanisms of acute graft-vs.-host disease. Biol Blood Marrow Transplant 1999; 5: 347–356.

    Article  CAS  PubMed  Google Scholar 

  5. Martino R, Caballero MD, Canals C et al. Reduced-intensity conditioning reduces the risk of severe infections after allogeneic peripheral blood stem cell transplantation. Bone Marrow Transplant 2001; 28: 341–347.

    Article  CAS  PubMed  Google Scholar 

  6. Mielcarek M, Martin PJ, Leisenring W et al. Graft-versus-host disease after nonmyeloablative vs conventional hematopoietic stem cell transplantation. Blood 2003; 102: 756–762.

    Article  CAS  PubMed  Google Scholar 

  7. Couriel DR, Saliba RM, Giralt S et al. Acute and chronic graft-versus-host disease after ablative and nonmyeloablative conditioning for allogeneic hematopoietic transplantation. Biol Blood Marrow Transplant 2004; 10: 178–185.

    Article  PubMed  Google Scholar 

  8. Toh HC, Spitzer TR, Preffer F et al. Fluctuating lymphocyte chimerism, tolerance and anti-tumor response in a patient with refractory lymphoma receiving nonmyeloablative conditioning and a haploidentical related allogeneic bone marrow transplant. Cytokines Cell Mol Ther 2002; 7: 43–47.

    Article  PubMed  Google Scholar 

  9. Obama K, Takemoto Y, Takatsuka Y, Utsunomiya A . Successful reduced-intensity HLA haploidentical stem cell transplantation based on the concept of feto-maternal tolerance for an elderly patient with myelodysplastic syndrome. Bone Marrow Transplant 2004; 33: 253.

    Article  CAS  PubMed  Google Scholar 

  10. Satoh M, Miyamura K, Yamada M et al. Haploidentical, non-myeloablative stem-cell transplantation for advanced renal-cell carcinoma. Lancet Oncol 2004; 5: 125–126.

    Article  PubMed  Google Scholar 

  11. Gaspar HB, Amrolia P, Hassan A et al. Non-myeloablative stem cell transplantation for congenital immunodeficiencies. Recent Results Cancer Res 2002; 159: 134–142.

    Article  CAS  PubMed  Google Scholar 

  12. Tamaki H, Ikegame K, Kawakami M et al. Successful engraftment of HLA-haploidentical related transplants using nonmyeloablative conditioning with fludarabine, busulfan and anti-T-lymphocyte globulin. Leukemia 2003; 17: 2052–2054.

    Article  CAS  PubMed  Google Scholar 

  13. Koenecke C, Shaffer J, Alexander SI et al. NK cell recovery, chimerism, function, and recognition in recipients of haploidentical hematopoietic cell transplantation following nonmyeloablative conditioning using a humanized anti-CD2 mAb, Medi-507. Exp Hematol 2003; 31: 911–923.

    Article  CAS  PubMed  Google Scholar 

  14. Aversa F, Tabilio A, Velardi A et al. Treatment of high-risk acute leukemia with T cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med 1998; 339: 1186–1193.

    Article  CAS  PubMed  Google Scholar 

  15. Horowitz MM, Gale RP, Sondel PM et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990; 75: 555–562.

    CAS  PubMed  Google Scholar 

  16. Aversa F, Terenzi A, Tabilio A et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol 2005; 23: 3447–3454.

    Article  PubMed  Google Scholar 

  17. Slavin S, Nagler A, Naparstek E et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 1998; 91: 756–763.

    CAS  PubMed  Google Scholar 

  18. Sykes M, Preffer F, McAfee S et al. Mixed lymphohaemopoietic chimerism and graft-versus-lymphoma effects after non-myeloablative therapy and HLA-mismatched bone-marrow transplantation. Lancet 1999; 353: 1755–1759.

    Article  CAS  PubMed  Google Scholar 

  19. Childs R, Chernoff A, Contentin N et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med 2000; 343: 750–758.

    Article  CAS  PubMed  Google Scholar 

  20. Lewalle P, Triffet A, Delforge A et al. Donor lymphocyte infusions in adult haploidentical transplant: a dose finding study. Bone Marrow Transplant 2003; 31: 39–44.

    Article  CAS  PubMed  Google Scholar 

  21. Nagler A, Ohana M, Alper R et al. Induction of oral tolerance in bone marrow transplantation recipients suppresses graft-versus-host disease in a semiallogeneic mouse model. Bone Marrow Transplant 2003; 32: 363–369.

    Article  CAS  PubMed  Google Scholar 

  22. Hoffmann P, Ermann J, Edinger M et al. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 2002; 196: 389–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sato K, Yamashita N, Yamashita N et al. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 2003; 18: 367–379.

    Article  CAS  PubMed  Google Scholar 

  24. Ruggeri L, Capanni M, Urbani E et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    Article  CAS  PubMed  Google Scholar 

  25. Wirth K, Mertelsmann R . Cytoprotective function of keratinocyte growth factor in tumour therapy-induced tissue damage. Br J Haematol 2002; 116: 505–510.

    Article  PubMed  Google Scholar 

  26. Pierce GF, Yanagihara D, Klopchin K et al. Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor. J Exp Med 1994; 179: 831–840.

    Article  CAS  PubMed  Google Scholar 

  27. Ulich TR, Yi ES, Longmuir K et al. Keratinocyte growth factor is a growth factor for type II pneumocytes in vivo. J Clin Invest 1994; 93: 1298–1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Housley RM, Morris CF, Boyle W et al. Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract. J Clin Invest 1994; 94: 1764–1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khan WB, Shui C, Ning S, Knox SJ . Enhancement of murine intestinal stem cell survival after irradiation by keratinocyte growth factor. Radiat Res 1997; 148: 248–253.

    Article  CAS  PubMed  Google Scholar 

  30. Panoskaltsis-Mortari A, Taylor PA, Rubin JS et al. Keratinocyte growth factor facilitates alloengraftment and ameliorates graft-versus-host disease in mice by a mechanism independent of repair of conditioning-induced tissue injury. Blood 2000; 96: 4350–4356.

    CAS  PubMed  Google Scholar 

  31. Panoskaltsis-Mortari A, Lacey DL, Vallera DA, Blazar BR . Keratinocyte growth factor administered before conditioning ameliorates graft-versus-host disease after allogeneic bone marrow transplantation in mice. Blood 1998; 92: 3960–3967.

    CAS  PubMed  Google Scholar 

  32. Krijanovski OI, Hill GR, Cooke KR et al. Keratinocyte growth factor separates graft-versus-leukemia effects from graft-versus-host disease. Blood 1999; 94: 825–831.

    CAS  PubMed  Google Scholar 

  33. van Eijk HM, Rooyakkers DR, Deutz NE . Rapid routine determination of amino acids in plasma by high-performance liquid chromatography with a 2–3 microns Spherisorb ODS II column. J Chromatogr 1993; 620: 143–148.

    Article  CAS  PubMed  Google Scholar 

  34. von Asmuth EJ, Maessen JG, van der Linden CJ, Buurman WA . Tumour necrosis factor alpha (TNF-alpha) and interleukin 6 in a zymosan-induced shock model. Scand J Immunol 1990; 32: 313–319.

    Article  CAS  PubMed  Google Scholar 

  35. Lutgens LC, Deutz NE, Gueulette J et al. Citrulline: a physiologic marker enabling quantitation and monitoring of epithelial radiation-induced small bowel damage. Int J Radiat Oncol Biol Phys 2003; 57: 1067–1074.

    Article  CAS  PubMed  Google Scholar 

  36. Wakabayashi Y, Yamada E, Hasegawa T, Yamada R . Enzymological evidence for the indispensability of small intestine in the synthesis of arginine from glutamate. I. Pyrroline-5-carboxylate synthase. Arch Biochem Biophys 1991; 291: 1–8.

    Article  CAS  PubMed  Google Scholar 

  37. Zeng D, Gazit G, Dejbakhsh-Jones S et al. Heterogeneity of NK1.1+ T cells in the bone marrow: divergence from the thymus. J Immunol 1999; 163: 5338–5345.

    CAS  PubMed  Google Scholar 

  38. Zeng D, Hoffmann P, Lan F et al. Unique patterns of surface receptors, cytokine secretion, and immune functions distinguish T cells in the bone marrow from those in the periphery: impact on allogeneic bone marrow transplantation. Blood 2002; 99: 1449–1457.

    Article  CAS  PubMed  Google Scholar 

  39. Hill GR, Ferrara JL . The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood 2000; 95: 2754–2759.

    CAS  PubMed  Google Scholar 

  40. Ellison CA, Natuik SA, Fischer JM et al. Effect of recombinant human keratinocyte growth factor (rHuKGF) on the immunopathogenesis of intestinal graft-vs.-host disease induced without a preconditioning regimen. J Clin Immunol 2004; 24: 197–211.

    Article  CAS  PubMed  Google Scholar 

  41. Lutgens L, Deutz N, Granzier-Peeters M et al. Plasma citrulline concentration: a surrogate endpoint for radiation-induced mucosal atrophy of the small bowel. A feasibility study in 23 patients. Int J Radiat Oncol Biol Phys 2004; 60: 275–285.

    Article  CAS  PubMed  Google Scholar 

  42. Blijlevens NM, Lutgens LC, Schattenberg AV, Donnelly JP . Citrulline: a potentially simple quantitative marker of intestinal epithelial damage following myeloablative therapy. Bone Marrow Transplant 2004; 34: 193–196.

    Article  CAS  PubMed  Google Scholar 

  43. Wakabayashi Y, Yamada E, Yoshida T, Takahashi N . Effect of intestinal resection and arginine-free diet on rat physiology. Am J Physiol 1995; 269: G313–G318.

    CAS  PubMed  Google Scholar 

  44. Chen K, Nezu R, Sando K et al. Influence of glutamine-supplemented parenteral nutrition on intestinal amino acid metabolism in rats after small bowel resection. Surg Today 996; 26: 618–623.

    Article  Google Scholar 

  45. Crenn P, Coudray-Lucas C, Thuillier F et al. Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology 2000; 119: 1496–1505.

    Article  CAS  PubMed  Google Scholar 

  46. Farrell CL, Bready JV, Rex KL et al. Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res 1998; 58: 933–939.

    CAS  PubMed  Google Scholar 

  47. Meropol NJ, Somer RA, Gutheil J et al. Randomized phase I trial of recombinant human keratinocyte growth factor plus chemotherapy: potential role as mucosal protectant. J Clin Oncol 2003; 21: 1452–1458.

    Article  CAS  PubMed  Google Scholar 

  48. Danilenko DM, Ring BD, Yanagihara D et al. Keratinocyte growth factor is an important endogenous mediator of hair follicle growth, development, and differentiation. Normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia. Am J Pathol 1995; 147: 145–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Igarashi T, Wynberg J, Srinivasan R et al. Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells. Blood 2004; 104: 170–177.

    Article  CAS  PubMed  Google Scholar 

  50. Anasetti C . Advances in the prevention of graft-versus-host disease after hematopoietic cell transplantation. Transplantation 2004; 77 (Suppl.): S79–S83 (review).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mrs T Jeunhomme for performing the TNF-α ELISA's, Mr DJH Haagen for amino-acid analyses of plasma samples and Mr JPM Cleutjens for help with morphometric analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Vanclée.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanclée, A., Lutgens, L., Oving, E. et al. Keratinocyte growth factor ameliorates acute graft-versus-host disease in a novel nonmyeloablative haploidentical transplantation model. Bone Marrow Transplant 36, 907–915 (2005). https://doi.org/10.1038/sj.bmt.1705157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705157

Keywords

This article is cited by

Search

Quick links