Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Autografting

Prognostic analysis of pre-transplant peripheral T-cell levels in patients receiving an autologous hematopoietic progenitor-cell transplant

Summary:

The purpose of this study was to evaluate pre-transplant T-cell status in autologous hematopoietic progenitor-cell transplantation (HPCT) recipients. Between 1999 and 2002 we prospectively enrolled 85 autologous HPCT recipients with solid tumors (N=50) or hematological malignancies (n=35). Patient diagnoses included breast cancer (N=49), non-Hodgkin's lymphoma (N=20), myeloma (N=11), Hodgkin's disease (N=3), germ-cell tumor (N=1) and amyloidosis (N=1). Levels of CD3, CD4, CD8, memory and naïve CD4, and CD8 T-cell subsets were analyzed before autologous HPCT. Autologous HPCT recipients presented with lower pre-transplant counts of CD3, CD4, but not CD8 T cells, as compared to healthy controls. Pre-transplant CD4 T-cell levels correlated with progression-free survival (PFS) (P=0.002) and overall survival (OS) (P=0.05), in patients with hematologic malignancies (P=0.02) and breast cancer (P=0.04). Specifically, pre-transplant memory CD4 + CD45RA − CD62L − T-cell levels correlated with PFS (P=0.01). The prognostic effects of pre-transplant CD4 and CD4 + CD45RA − CD62L − T cells were independent of tumor diagnosis, tumor stage, tumor sensitivity, and, for breast cancer patients, Her2 / neu status. Our results suggest that pre-transplant CD4 T-cell status, specifically CD4 + CD45RA − CD62L − memory T cells, correlates with the outcome of autologous HPCT recipients. These observations suggest the feasibility of prospective identification of those patients at higher risk of relapse, based on their immune status.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kolb HJ, Mittermuller J, Clemm C et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990; 76: 2462–2465.

    CAS  PubMed  Google Scholar 

  2. Kolb HJ, Schattenberg A, Goldman JM et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995; 86: 2041–2050.

    CAS  PubMed  Google Scholar 

  3. Goldman JM, Gale RP, Horowitz MM et al. Bone marrow transplantation for chronic myelogenous leukemia in chronic phase. Increased risk for relapse associated with T-cell depletion. Ann Intern Med 1988; 108: 806–814.

    Article  CAS  PubMed  Google Scholar 

  4. Apperley JF, Mauro FR, Gregory W et al. Bone marrow transplantation for chronic myeloid leukaemia in first chronic phase: Importance of a graft-versus-leukemia effect. Br J Haematol 1988; 69: 239–245.

    Article  CAS  PubMed  Google Scholar 

  5. Martin PJ, Clift RA, Fisher LD et al. HLA-identical marrow transplantation during accelerated-phase chronic myelogenous leukemia: analysis of survival and remission duration. Blood 1988; 72: 1978–1984.

    CAS  PubMed  Google Scholar 

  6. Mackall CL . T-cell immunodeficiency following cytotoxic antineoplastic therapy: a review. Stem Cells 2000; 18: 10–18.

    Article  CAS  PubMed  Google Scholar 

  7. Mackall CL, Fleisher TA, Brown MR et al. Lymphocyte depletion during treatment with intensive chemotherapy for cancer. Blood 1994; 84: 2221–2228.

    CAS  PubMed  Google Scholar 

  8. Mackall CL, Stein D, Fleisher TA et al. Prolonged CD4 depletion after sequential autologous peripheral blood progenitor cell infusion in children and young adults. Blood 2000; 96: 754–762.

    CAS  PubMed  Google Scholar 

  9. Blanck G . Mutations and regulatory anomalies effecting tumor cell immune functions. Cancer Immunol Immunother 2004; 53: 1–16.

    Article  PubMed  Google Scholar 

  10. Peters WP, Eder JP, Henner WD et al. High-dose combination alkylating agents with autologous bone marrow support: a phase 1 trial. J Clin Oncol 1986; 4: 646–654.

    Article  CAS  PubMed  Google Scholar 

  11. Gaspard MH, Maraninchi D, Stoppa AM et al. Intensive chemotherapy with high doses of BCNU, etoposide, cytosine arabinoside, and melphalan (BEAM) followed by autologous bone marrow transplantation: toxicity and antitumor activity in 26 patients with poor-risk malignancies. Cancer Chemother Pharmacol 1988; 22: 256–262.

    Article  CAS  PubMed  Google Scholar 

  12. Barlogie B, Alexanian R, Dicke KA et al. High-dose chemoradiotherapy and autologous bone marrow transplantation for resistant multiple myeloma. Blood 1987; 70: 869–872.

    CAS  PubMed  Google Scholar 

  13. Nieto Y, Vredenburgh J, Shpall EJ et al. Pilot study of concurrent administration of trastuzumab with high-dose cyclophosphamide, cisplatin, and BCNU, with autologous hematopoietic progenitor-cell support, in patients with advanced HER2-positive breast cancer. Clin Cancer Res 2004; 10: 7136–7143.

    Article  CAS  PubMed  Google Scholar 

  14. Nieto Y, Shpall EJ, Bearman SI et al. Phase I and pharmacokinetic study of docetaxel combined with melphalan and carboplatin, with autologous hematopoietic progenitor cell support, in patients with advanced refractory malignancies. Biol Blood Marrow Transplant 2005; 11: 297–306.

    Article  CAS  PubMed  Google Scholar 

  15. Roederer M, De Rosa SC, Watanabe N, Herzenberg LA . Dynamics of fine T-cell subsets during HIV disease and after thymic ablation by mediastinal irradiation. Semin Immunol 1997; 9: 389–396.

    Article  CAS  PubMed  Google Scholar 

  16. Watanabe N, De Rosa SC, Cmelak A et al. Long-term depletion of naïve T cells in patients treated for Hodgkin's disease. Blood 1997; 90: 3662–3672.

    CAS  PubMed  Google Scholar 

  17. De Rosa SC, Herzenberg LA, Herzenberg LA, Roederer M . 11-color, 13-parameter flow cytometry: identification of human naïve T cells by phenotype, function, and T-cell receptor diversity. Nat Med 2001; 7: 245–248.

    Article  CAS  PubMed  Google Scholar 

  18. Kaplan EL, Meier P . Nonparametric estimation from incomplete observations. JAMA 1958; 53: 457–481.

    Google Scholar 

  19. Peto R, Peto J . Regression models and life tables. J R Stat Soc A 1972; 135: 185–188.

    Article  Google Scholar 

  20. Cox DR . Regression models and life tables. J R Stat Soc B 1972; 34: 187–202.

    Google Scholar 

  21. Guillaume T, Rubinstein DB, Symann M . Immune reconstitution and immunotherapy after autologous hematopoietic stem cell transplantation. Blood 1998; 92: 1471–1490.

    CAS  PubMed  Google Scholar 

  22. Porrata LF, Litzow MR, Markovic SN . Immune reconstitution after autologous hematopoietic stem cell transplantation. Mayo Clin Proc 2001; 76: 407–412.

    Article  CAS  PubMed  Google Scholar 

  23. Porrata LF, Gertz MA, Inwards DJ et al. Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation in multiple myeloma or non-Hodgkin lymphoma. Blood 2001; 98: 579–585.

    Article  CAS  PubMed  Google Scholar 

  24. Porrata LF, Ingle JN, Litzow MR et al. Prolonged survival associated with early lymphocyte recovery after autologous hematopoietic stem cell transplantation for patients with metastatic breast cancer. Bone Marrow Transplant 2001; 28: 865–871.

    Article  CAS  PubMed  Google Scholar 

  25. Porrata LF, Inwards DJ, Micallef IN et al. Early lymphocyte recovery post-autologous haematopoietic stem cell transplantation is associated with better survival in Hodgkin's disease. Br J Haematol 2002; 117: 629–633.

    Article  PubMed  Google Scholar 

  26. Porrata LF, Litzow MR, Tefferi A et al. Early lymphocyte recovery is a predictive factor for prolonged survival after autologous hematopoietic stem cell transplantation for acute myelogenous leukemia. Leukemia 2002; 16: 1311–1318.

    Article  CAS  PubMed  Google Scholar 

  27. Nieto Y, Shpall EJ, McNiece IK et al. Prognostic evaluation of the early lymphocyte recovery in patients with advanced metastatic and non-metastastic breast cancer receiving high-dose chemotherapy with an autologous stem-cell transplant. Clin Cancer Res 2004; 10: 5076–5086.

    Article  CAS  PubMed  Google Scholar 

  28. Porrata LF, Litzow MR, Inwards DJ et al. Infused peripheral blood autograft absolute lymphocyte count correlates with day 15 absolute lymphocyte count and clinical outcome after autologous peripheral hematopoietic stem cell transplantation in non-Hodgkin's lymphoma. Bone Marrow Transplant 2004; 33: 291–298.

    Article  CAS  PubMed  Google Scholar 

  29. Porrata LF, Gertz MA, Geyer SM . The dose of infused lymphocytes in the autograft directly correlates with clinical outcome after autologous peripheral blood hematopoietic stem cell transplantation in multiple myeloma. Leukemia 2004; 18: 1085–1092.

    Article  CAS  PubMed  Google Scholar 

  30. Kay NE, Leong TL, Bone N et al. Blood levels of immune cells predict survival in myeloma patients: results of an Eastern Cooperative Oncology Group phase 3 trial for newly diagnosed multiple myeloma patients. Blood 2001; 98: 23–28.

    Article  CAS  PubMed  Google Scholar 

  31. Kanegane H, Kasahara Y, Niida Y et al. Expression of L-selectin (CD62L) discriminates Th1- and Th2 like cytokine-producing memory CD4 + T cells. Immunol 1996; 87: 186–190.

    Article  CAS  Google Scholar 

  32. Soiffer RJ, Murray C, Cochran K et al. Clinical and immunologic effects of prolonged infusion of low-dose recombinant interleukin-2 after autologous and T-cell-depleted allogeneic bone marrow transplantation. Blood 1992; 79: 517–526.

    CAS  PubMed  Google Scholar 

  33. Nagler A, Ackerstein A, Or R et al. Immunotherapy with recombinant human interleukin-2 and recombinant interferon-alpha in lymphoma patients postautologous marrow or stem cell transplantation. Blood 1997; 89: 3951–3959.

    CAS  PubMed  Google Scholar 

  34. Hamon MD, Prentice HG, Gottlieb DJ et al. Immunotherapy with interleukin 2 after ABMT in AML. Bone Marrow Transplant 1993; 11: 399–401.

    CAS  PubMed  Google Scholar 

  35. Benyunes MC, Massumoto C, York A et al. Interleukin-2 with or without lymphokine-activated killer cells as consolidative immunotherapy after autologous bone marrow transplantation for acute myelogenous leukemia. Bone Marrow Transplant 1993; 12: 159–163.

    CAS  PubMed  Google Scholar 

  36. Benyunes MC, Higuchi C, York A et al. Immunotherapy with interleukin 2 with or without lymphokine-activated killer cells after autologous bone marrow transplantation for malignant lymphoma: a feasibility trial. Bone Marrow Transplant 1995; 16: 283–288.

    CAS  PubMed  Google Scholar 

  37. Lister J, Rybka WB, Donnenberg AD et al. Autologous peripheral blood stem cell transplantation and adoptive immunotherapy with activated natural killer cells in the immediate posttransplant period. Clin Cancer Res 1995; 1: 607–614.

    CAS  PubMed  Google Scholar 

  38. Hsu FJ, Benike C, Fagnoni F et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996; 2: 52–58.

    Article  CAS  PubMed  Google Scholar 

  39. Burns LJ, Weisdorf DJ, DeFor TE et al. Enhancement of the anti-tumor activity of a peripheral blood progenitor cell graft by mobilization with interleukin-2 plus granulocyte colony-stimulating factor in patients with advanced breast cancer. Exp Hematol 2000; 28: 96–103.

    Article  CAS  PubMed  Google Scholar 

  40. Sosman JA, Stiff P, Moss SM et al. Pilot trial of interleukin-2 with granulocyte colony-stimulating factor for the mobilization of progenitor cells in advanced breast cancer patients undergoing high-dose chemotherapy: Expansion of immune effectors within the stem-cell graft and post-stem-cell infusion. J Clin Oncol 2001; 19: 634–644.

    Article  CAS  PubMed  Google Scholar 

  41. Toh HC, McAfee SL, Sackstein R et al. High-dose cyclophosphamide + carboplatin and interleukin-2 (IL-2) activated autologous stem cell transplantation followed by maintenance IL-2 therapy in metastatic breast carcinoma – a phase II study. Bone Marrow Transplant 2000; 25: 19–24.

    Article  CAS  PubMed  Google Scholar 

  42. Gravis G, Viens P, Vey N et al. Pilot study of immunotherapy with interleukin-2 after autologous stem cell transplantation in advanced breast cancers. Anticancer Res 2000; 20: 3987–3991.

    CAS  PubMed  Google Scholar 

  43. Perillo A, Pierelli L, Battaglia A et al. Administration of low-dose interleukin-2 plus G-CSF / EPO early after autologous PBSC transplantation: effects on immune recovery and NK activity in a prospective study in women with breast and ovarian cancer. Bone Marrow Transplant 2002; 30: 571–578.

    Article  CAS  PubMed  Google Scholar 

  44. Burns LJ, Weisdorf DJ, DeFor TE et al. IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I / II trial. Bone Marrow Transplant 2003; 32: 177–186.

    Article  CAS  PubMed  Google Scholar 

  45. Morse MA, Vredenburgh JJ, Lyerly HK . A comparative study of the generation of dendritic cells from mobilized peripheral blood progenitor cells of patients undergoing high-dose chemotherapy. J Hematother Stem Cell Res 1999; 8: 577–584.

    Article  CAS  PubMed  Google Scholar 

  46. de Gast GC, Vyth-Dreese FA, Nooijen W et al. Reinfusion of autologous lymphocytes with granulocyte-macrophage colony-stimulating factor induces rapid recovery of CD4 + and CD8 + T cells after high-dose chemotherapy for metastatic breast cancer. J Clin Oncol 2002; 20: 58–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the nurses and house staff of the University of Colorado Bone Marrow Transplant Program. We are grateful to our patients for their willingness to participate in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S L Rosinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosinski, S., McNiece, I., Shpall, E. et al. Prognostic analysis of pre-transplant peripheral T-cell levels in patients receiving an autologous hematopoietic progenitor-cell transplant. Bone Marrow Transplant 36, 425–430 (2005). https://doi.org/10.1038/sj.bmt.1705073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705073

Keywords

This article is cited by

Search

Quick links