Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Post-Transplant Events

Circulating dendritic cell subset levels after allogeneic stem cell transplantation in children correlate with time post transplant and severity of acute graft-versus-host disease

Summary:

We examined the recovery of circulating monocytoid (Lin CD11+ HLADR+) and plasmacytoid (Lin CD123+ HLADR+) precursor (pre) dendritic cell (DC) subsets after allogeneic stem cell transplantation (SCT) in 39 children, using age-matched healthy children as controls. The frequencies of DCs in peripheral blood samples were determined by flow cytometry. The initial recovery of DC occurred simultaneously with myeloid engraftment. However, with time, DC subset values declined, being very low 40–50 days after SCT. Low monocytoid and plasmacytoid DC values were associated significantly with the development of severe acute graft-versus-host disease (aGVHD) (P=0.042 and 0.017, respectively). Plasmacytoid DC values were lower than in the age-matched controls for the entire follow-up period (range 102–2569 days), although, with time, values approached normal levels. Normal monocytoid DC numbers were observed within 300–400 days post SCT. The severity of chronic GVHD did not correlate with quantitative recovery of DC. We conclude that in pediatric SCT, initial recovery of DC production is concurrent with that of myelopoiesis, yet with time, DC subset values decline and low counts are associated with severe aGVHD. Monocytoid DC numbers approach normal levels within a year of SCT, but plasmacytoid DC counts recover very slowly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Banchereau J, Briere F, Caux C et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811.

    Article  CAS  PubMed  Google Scholar 

  2. Lechler R, Ng WF, Steinman RM . Dendritic cells in transplantation – friend or foe? Immunity 2001; 14: 357–368.

    Article  CAS  PubMed  Google Scholar 

  3. Morelli AE, Thomson AW . Dendritic cells: regulators of alloimmunity and opportunities for tolerance induction. Immunol Rev 2003; 196: 125–146.

    Article  CAS  PubMed  Google Scholar 

  4. Moser M, Murphy KM . Dendritic cell regulation of TH1–TH2 development. Nat Immunol 2000; 1: 199–205.

    Article  CAS  PubMed  Google Scholar 

  5. Lotze MT, Thomson AW . Dendritic cells. In: Michael T, Lotze AWT (ed.). Biology and Clinical Applications, 2nd edn. Academic Press: London, UK 2001.

    Google Scholar 

  6. Steinman RM, Hawiger D, Liu K et al. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann NY Acad Sci 2003; 987: 15–25.

    Article  CAS  PubMed  Google Scholar 

  7. Banchereau J, Paczesny S, Blanco P et al. Dendritic cells: controllers of the immune system and a new promise for immunotherapy. Ann NY Acad Sci 2003; 987: 180–187.

    Article  CAS  PubMed  Google Scholar 

  8. Sallusto F, Lanzavecchia A . Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994; 179: 1109–1118.

    Article  CAS  PubMed  Google Scholar 

  9. O'Doherty U, Peng M, Gezelter S et al. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 1994; 82: 487–493.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Olweus J, BitMansour A, Warnke R et al. Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin. Proc Natl Acad Sci USA 1997; 94: 12551–12556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grouard G, Rissoan MC, Filgueira L et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 1997; 185: 1101–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rissoan MC, Soumelis V, Kadowaki N et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 1999; 283: 1183–1186.

    Article  CAS  PubMed  Google Scholar 

  13. Cella M, Jarrossay D, Facchetti F et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 1999; 5: 919–923.

    Article  CAS  PubMed  Google Scholar 

  14. Bauer M, Redecke V, Ellwart JW et al. Bacterial CpG-DNA triggers activation and maturation of human CD11c, CD123+ dendritic cells. J Immunol 2001; 166: 5000–5007.

    Article  CAS  PubMed  Google Scholar 

  15. Cella M, Facchetti F, Lanzavecchia A, Colonna M . Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol 2000; 1: 305–310.

    Article  CAS  PubMed  Google Scholar 

  16. Ruedl C, Bachmann MF, Kopf M . The antigen dose determines T helper subset development by regulation of CD40 ligand. Eur J Immunol 2000; 30: 2056–2064.

    Article  CAS  PubMed  Google Scholar 

  17. Boonstra A, Asselin-Paturel C, Gilliet M et al. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J Exp Med 2003; 197: 101–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gilliet M, Liu YJ . Human plasmacytoid-derived dendritic cells and the induction of T-regulatory cells. Hum Immunol 2002; 63: 1149–1155.

    Article  CAS  PubMed  Google Scholar 

  19. Wakkach A, Fournier N, Brun V et al. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 2003; 18: 605–617.

    Article  CAS  PubMed  Google Scholar 

  20. Jonuleit H, Schmitt E, Schuler G et al. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000; 192: 1213–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vakkila J, Thomson AW, Vettenranta K et al. Dendritic cell subsets in childhood and in children with cancer: relation to age and disease prognosis. Clin Exp Immunol 2004; 135: 455–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Przepiorka D, Weisdorf D, Martin P et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant 1995; 15: 825–828.

    CAS  PubMed  Google Scholar 

  23. Sullivan KM, Shulman HM, Storb R et al. Chronic graft-versus-host disease in 52 patients: adverse natural course and successful treatment with combination immunosuppression. Blood 1981; 57: 267–276.

    CAS  PubMed  Google Scholar 

  24. Shulman HM, Sullivan KM, Weiden PL et al. Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med 1980; 69: 204–217.

    Article  CAS  PubMed  Google Scholar 

  25. Teig N, Moses D, Gieseler S, Schauer U . Age-related changes in human blood dendritic cell subpopulations. Scand J Immunol 2002; 55: 453–457.

    Article  CAS  PubMed  Google Scholar 

  26. Hoffmann TK, Muller-Berghaus J, Ferris RL et al. Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck. Clin Cancer Res 2002; 8: 1787–1793.

    PubMed  Google Scholar 

  27. Mazariegos GV, Zahorchak AF, Reyes J et al. Dendritic cell subset ratio in peripheral blood correlates with successful withdrawal of immunosuppression in liver transplant patients. Am J Transplant 2003; 3: 689–696.

    Article  PubMed  Google Scholar 

  28. Hagendorens MM, Ebo DG, Schuerwegh AJ et al. Differences in circulating dendritic cell subtypes in cord blood and peripheral blood of healthy and allergic children. Clin Exp Allergy 2003; 33: 633–639.

    Article  CAS  PubMed  Google Scholar 

  29. Fagnoni FF, Oliviero B, Giorgiani G et al. Reconstitution dynamics of plasmacytoid and myeloid dendritic cell precursors after allogeneic myeloablative hematopoietic stem cell transplantation. Blood 2004; 104: 281–289.

    Article  CAS  PubMed  Google Scholar 

  30. Arpinati M, Chirumbolo G, Urbini B et al. Acute graft-versus-host disease and steroid treatment impair CD11c+ and CD123+ dendritic cell reconstitution after allogeneic peripheral blood stem cell transplantation. Biol Blood Marrow Transplant 2004; 10: 106–115.

    Article  PubMed  Google Scholar 

  31. Kitawaki T, Kadowaki N, Ishikawa T et al. Compromised recovery of natural interferon-alpha/beta-producing cells after allogeneic hematopoietic stem cell transplantation complicated by acute graft-versus-host disease and glucocorticoid administration. Bone Marrow Transplant 2003; 32: 187–194.

    Article  CAS  PubMed  Google Scholar 

  32. Rossi M, Arpinati M, Rondelli D, Anasetti C . Plasmacytoid dendritic cells: do they have a role in immune responses after hematopoietic cell transplantation? Hum Immunol 2002; 63: 1194–1200.

    Article  PubMed  Google Scholar 

  33. Teshima T, Reddy P, Lowler KP et al. Flt3 ligand therapy for recipients of allogeneic bone marrow transplants expands host CD8 alpha(+) dendritic cells and reduces experimental acute graft-versus-host disease. Blood 2002; 99: 1825–1832.

    Article  CAS  PubMed  Google Scholar 

  34. Arpinati M, Green CL, Heimfeld S et al. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 2000; 95: 2484–2490.

    CAS  PubMed  Google Scholar 

  35. Shodell M, Shah K, Siegal FP . Circulating human plasmacytoid dendritic cells are highly sensitive to corticosteroid administration. Lupus 2003; 12: 222–230.

    Article  CAS  PubMed  Google Scholar 

  36. Shodell M, Siegal FP . Corticosteroids depress IFN-alpha-producing plasmacytoid dendritic cells in human blood. J Allergy Clin Immunol 2001; 108: 446–448.

    Article  CAS  PubMed  Google Scholar 

  37. Klangsinsirikul P, Carter GI, Byrne JL et al. Campath-1G causes rapid depletion of circulating host dendritic cells (DCs) before allogeneic transplantation but does not delay donor DC reconstitution. Blood 2002; 99: 2586–2591.

    Article  CAS  PubMed  Google Scholar 

  38. Clark FJ, Freeman L, Dzionek A et al. Origin and subset distribution of peripheral blood dendritic cells in patients with chronic graft-versus-host disease. Transplantation 2003; 75: 221–225.

    Article  PubMed  Google Scholar 

  39. Klingebiel T, Schlegel PG . GVHD: overview on pathophysiology, incidence, clinical and biological features. Bone Marrow Transplant 1998; 21 (Suppl 2): S45–S49.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms Sanna Liuhanen for her skilful technical assistance and Mrs Jaana Vettenranta for her secretarial help. Discussions with Professor Michael T Lotze (University of Pittsburgh, USA) have been of considerable value throughout this study. The study was supported by the Clinical Research Institute of the Helsinki University Central Hospital, The Finnish Cultural Foundation, and the Nona and Kullervo Vare Foundation, Helsinki, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Vakkila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vakkila, J., Thomson, A., Hovi, L. et al. Circulating dendritic cell subset levels after allogeneic stem cell transplantation in children correlate with time post transplant and severity of acute graft-versus-host disease. Bone Marrow Transplant 35, 501–507 (2005). https://doi.org/10.1038/sj.bmt.1704827

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704827

Keywords

This article is cited by

Search

Quick links