Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

The whys and hows of hematopoietic progenitor and stem cell mobilization

Summary:

Intentional mobilization of hematopoietic/stem cells into the circulation has improved the efficiency of their collection. Transplantation of mobilized blood stem cells to patients with marrow aplasia results in a faster pace of hematopoietic recovery than transplantation of marrow-derived stem cells. Autologous and allogeneic hematopoietic stem cell transplantation are increasingly performed with blood-derived cells. Donors of both autologous and allogeneic blood stem cells do not always respond well to therapies designed to produce mobilization. Autologous donors may respond poorly as a result of myelotoxic damage inflicted by prior antitumor therapy, but this explanation is not valid for allogeneic donors. The mechanism(s) involved in the process of mobilization are incompletely understood. Until these mechanisms are elucidated, methods to improve mobilization vigor on a rational basis will not be obvious. In the meanwhile, clinical observations may provide some hints regarding the whys and hows of mobilization and permit incremental improvements in this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wintrobe M (ed.) Clinical Hematology, 5th edn. Lea and Febinger: Philadelphia, 1961.

    Google Scholar 

  2. Maximow A . Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Saugetiere. Folia Hematol (Leipzig) 1909; 8: 125–141.

    Google Scholar 

  3. Malinin TI, Perry VP, Donlan MF . Some observations on the histology of lethally irradiated guinea pigs protected with nucleated elements of homologous blood. Blood 1963; 22: 499–500 (Abst).

    Article  Google Scholar 

  4. Cavins JA, Scheer SC, Thomas ED, Ferrebee JW . The recovery of lethally irradiated dogs given infusions of autologous leukocytes preserved at −80°C. Blood 1964; 23: 38–42.

    Article  CAS  PubMed  Google Scholar 

  5. Rubin SH, Cowan DH . Assay of granulocytic progenitor cells in human peripheral blood. Exp Hematol 1973; 1: 127–131.

    CAS  PubMed  Google Scholar 

  6. Barr RD, Whang-Peng J, Perry S . Hematopoietic stem cells in human peripheral blood. Science 1975; 190: 284–285.

    Article  CAS  PubMed  Google Scholar 

  7. Perry VP, Malinin TI, Kerby CC, Dolan MF . Protection of lethally irradiated guinea pigs with fresh and frozen homologous peripheral blood leukocytes. Cryobiology 1965; 1: 233–239.

    Article  CAS  PubMed  Google Scholar 

  8. Debelak-Fehir KM, Epstein RB . Restoration of hematopoiesis in dogs by infusion of cryopreserved autologous peripheral white cells following busulfan-cyclophosphamide treatment. Transplantation 1975; 20: 63–67.

    Article  CAS  PubMed  Google Scholar 

  9. Calvo W, Fliedner TM, Herbst E et al. Regeneration of blood forming organs after autologous leukocyte transfusion in lethally irradiated dogs. II. Distribution and cellularity of the marrow in irradiated and transfused animals. Blood 1976: 47: 593–601.

    Article  CAS  PubMed  Google Scholar 

  10. Storb R, Graham TC, Epstein RB et al. Demonstration of hematopoietic stem cells in the peripheral blood of baboons by cross circulation. Blood 1977; 50: 537–547.

    Article  CAS  PubMed  Google Scholar 

  11. Weiner RS, Richman CM, Yankee RA . Semicontinuous flow centrifugation for the pheresis of immunocompetent cells and stem cells. Blood 1977; 49: 391–397.

    Article  CAS  PubMed  Google Scholar 

  12. McCarthy DM, Goldman JM . Transfusion of circulating stem cells. CRC Crit Rev Clin Lab Sci 1984; 20: 1–24.

    Article  CAS  Google Scholar 

  13. Kessinger A, Armitage JO, Landmark JD, Weisenburger DD . Reconstitution of human hematopoietic function with autologous cryopreserved circulating stem cells. Exp Hematol 1986; 14: 192–196.

    CAS  PubMed  Google Scholar 

  14. Hershko C, Gale RP, Ho WG, Cline MJ . Cure of aplastic anaemia in paroxysmal nocturnal haemoglobinuria by marrow transfusion from identical twin: failure of peripheral-leukocyte transfusion to correct marrow aplasia. Lancet 1979; 1: 945–947.

    Article  CAS  PubMed  Google Scholar 

  15. Abrams RA, Glaubiger D, Appelbaum FR, Deisseroth AB . Result of attempted hematopoietic reconstitution using isologous peripheral blood mononuclear cells: a case report. Blood 1980; 56: 516–520.

    Article  CAS  PubMed  Google Scholar 

  16. Kessinger A, Vose JM, Bierman PJ, Armitage JO . High-dose therapy and autologous peripheral stem cell transplantation for patients with bone marrow metastases and relapsed lymphoma: an alternative to bone marrow purging. Exp Hematol 1991; 19: 1013–1016.

    CAS  PubMed  Google Scholar 

  17. Richman CM, Weiner RS, Yankee RA . Increase in circulating stem cells following chemotherapy in man. Blood 1976; 47: 1031–1039.

    Article  CAS  PubMed  Google Scholar 

  18. To LB, Haylock DN, Kimber RJ, Juttner CA . High levels of circulating haemopoietic stem cells in very early remission from acute non-lymphoblastic leukaemia and their collection and cryopreservation. Br J Haematol 1984; 58: 399–410.

    Article  CAS  PubMed  Google Scholar 

  19. Juttner CA, To LB, Ho JQK et al. Early lympho-hemopoietic recovery after autografting using peripheral blood stem cells in acute non-lymphoblastic leukemia. Transplant Proc 1988; 20: 40–42.

    CAS  PubMed  Google Scholar 

  20. Socinski MA, Cannistra SA, Elias A et al. Granulocyte-macrophage colony stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet 1988; 1: 1194–1198.

    Article  CAS  PubMed  Google Scholar 

  21. Duhrsen U, Villeval J-L, Boyd J et al. Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood 1988; 72: 2074–2081.

    Article  CAS  PubMed  Google Scholar 

  22. LeCorroller AG, Faucher C, Auperin A et al. Autologous peripheral blood progenitor-cell transplantation versus autologous bone marrow transplantation for adults and children with non-leukemic malignant disease. A randomised economic study. Pharmacoeconomics 1997; 11: 454–463.

    Article  CAS  Google Scholar 

  23. Russell NH, McQuaker G, Stainer C et al. Stem cell mobilisation in lymphoproliferative diseases. Bone Marrow Transplant 1998; 22: 935–940.

    Article  CAS  PubMed  Google Scholar 

  24. Narayanasami U, Kanteti R, Morelli J et al. Randomized trial of filgrastim versus chemotherapy and filgrastim mobilization of hematopoietic progenitor cells for rescue in autologous transplantation. Blood 2001; 98: 2059–2064.

    Article  CAS  PubMed  Google Scholar 

  25. Bensinger W, Appelbaum F, Rowley S et al. Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol 1995; 13: 2547–2555.

    Article  CAS  PubMed  Google Scholar 

  26. Demirer T, Buckner CD, Gooley T et al. Factors influencing collection of peripheral blood stem cells in patients with multiple myeloma. Bone Marrow Transplant 1996; 17: 937–941.

    CAS  PubMed  Google Scholar 

  27. Koc ON, Gerson SL, Cooper BW et al. Randomized cross-over trial of progenitor-cell mobilization: high-dose cyclophosphamide plus granulocyte colony-stimulating factor (G-CSF) versus granulocyte-macrophage colony-stimulating factor plus G-CSF. J Clin Oncol 2000; 18: 1824–1830.

    Article  CAS  PubMed  Google Scholar 

  28. Demirer T, Ayli M, Ozcan M et al. Mobilization of peripheral blood stem cells with chemotherapy and recombinant human granulocyte colony-stimulating factor (rhG-CSF): a randomized evaluation of different doses of rhG-CSF. Br J Haematol 2002; 116: 468–474.

    Article  CAS  PubMed  Google Scholar 

  29. Weaver CH, Schulman KA, Ketchum ID . Mobilization of peripheral blood stem cells following myelosuppressive chemotherapy: a randomized comparison of filgrastim, sargramostim, or sequential sargramostim and filgrastim. Bone Marrow Transplant 2001; 27: 23–29.

    Article  Google Scholar 

  30. Gazitt Y, Callander N, Freytes CO et al. Peripheral blood stem cell mobilization with cyclophosphamide in combination with G-CSF, GM-CSF or sequential GM-CSF/G-CSF in non-Hodgkin's lymphoma patients: a randomized prospective study. J Hematother Stem Cell Res 2000; 9: 737–748.

    Article  CAS  PubMed  Google Scholar 

  31. Ballestrero A, Ferrando F, Garuti A et al. Comparative effects of three cytokine regimens after high-dose cyclophosphamide: granulocyte colony-stimulating factor, granulocytemacrophage colony-stimulating factor (GM-CSF) and sequential Interleukin-3 and GM-CSF. J Clin Oncol 1999; 17: 1296–1303.

    Article  CAS  PubMed  Google Scholar 

  32. Pierelli L, Perillo A, Greggi S et al. Erythropoietin addition to granulocyte colony-stimulating factor abrogates life-threatening neutropenia and increases peripheral-blood progenitor-cell mobilization after epirubicin, paclitaxel, and cisplatin combination chemotherapy: results of a randomized comparison. J Clin Oncol 1999; 17: 1288–1295.

    Article  CAS  PubMed  Google Scholar 

  33. Waller CF, von Lintig F, Daskalakis A et al. Mobilization of peripheral blood progenitor cells in patients with breast cancer: a prospective randomized trial comparing rhG-CSF with the combination of rhG-CSF plus rhEpo after VIP-E chemotherapy. Bone Marrow Transplant 1999; 24: 19–24.

    Article  CAS  PubMed  Google Scholar 

  34. Perillo A, Pierelli L, Scambia G et al. Peripheral blood progenitor cell collection after epirubicin, paclitaxel, and cisplatin combination chemotherapy using EPO-based cytokine regimens: a randomized comparison of G-CSF and sequential GM-/G-CSF. Transfusion 2001; 41: 674–680.

    Article  CAS  PubMed  Google Scholar 

  35. Grigg AP, Roberts AW, Raunow H et al. Optimizing dose and scheduling of filgrastim (granulocyte colony-stimulating factor) for mobilization and collection of peripheral blood progenitor cells in normal volunteers. Blood 1995; 86: 4437–4445.

    Article  CAS  PubMed  Google Scholar 

  36. Waller CF, Bertz H, Wenger MK et al. Mobilization of peripheral blood progenitor cells for allogeneic transplantation: efficacy and toxicity of a high-dose rhG-CSF regimen. Bone Marrow Transplant 1996; 18: 279–283.

    CAS  PubMed  Google Scholar 

  37. Lee V, Li CK, Shing MMK et al. Single vs twice daily G-CSF dose for peripheral blood stem cells harvest in normal donors and children with non-malignant diseases. Bone Marrow Transplant 2000; 25: 931–935.

    Article  CAS  PubMed  Google Scholar 

  38. Sautois B, Baudoux E, Salmon JP et al. Administration of erythropoietin and granulocyte colony-stimulating factor in donor/recipient pairs to collect peripheral blood progenitor cells (PBPC) and red blood cell units for use in the recipient after allogeneic PBPC transplantation. Haematologica 2001; 86: 1209–1218.

    CAS  PubMed  Google Scholar 

  39. DiPersio JF, Khoury H, Haug J et al. Innovations in allogeneic stem-cell transplantation. Semin Hematol 2000; 37 (Suppl. 2): 33–41.

    Article  CAS  PubMed  Google Scholar 

  40. Stiff PJ . Management strategies for the hard-to-mobilize patient. Bone Marrow Transplant 1999; 23 (Suppl. 2): S29–S33.

    Article  PubMed  Google Scholar 

  41. Shpall EJ, Wheeler CA, Turner SA et al. A randomized phase 3 study of peripheral blood progenitor cell mobilization with stem cell factor and filgrastim in high-risk breast cancer patients. Blood 1999; 93: 2491–2501.

    CAS  PubMed  Google Scholar 

  42. Bishop MR, Anderson JR, Jackson JD et al. High-dose therapy and peripheral blood progenitor cell transplantation: effects of recombinant human granulocyte-macrophage colony-stimulating factor on the autograft. Blood 1994; 83: 610–616.

    Article  CAS  PubMed  Google Scholar 

  43. Kessinger A, Bishop MR, Anderson JR et al. Erythropoietin for mobilization of circulating progenitor cells in patients with previously-treated relapsed malignancies. Exp Hematol 1995; 23: 609–612.

    CAS  PubMed  Google Scholar 

  44. Vose JM, Kessinger A, Bierman PJ et al. The use of rhIL-3 for mobilization of peripheral blood stem cells in previously treated patients with lymphoid malignancies. Int J Cell Cloning 1992; 10 (Suppl. 1): 62–64.

    Article  Google Scholar 

  45. Bishop MR, Jackson JD, O'Kane-Murphy B et al. Phase I trial of recombinant fusion protein PIXY321 for mobilization of peripheral-blood cells. J Clin Oncol 1996; 14: 2521–2526.

    Article  CAS  PubMed  Google Scholar 

  46. Lebsack ME, McKenna HJ, Hoek JA et al. Safety of FLT3 ligand in healthy volunteers. Blood 1997; 90 (Suppl. 1): 170a (Abstr. 751).

    Google Scholar 

  47. Pettengell R, Luft T, de Wynter E et al. Effects of interleukin-6 on mobilization of primitive haemopoietic cells into the circulation. Br J Haematol 1995; 89: 237–242.

    Article  CAS  PubMed  Google Scholar 

  48. Siena S, Schiavo R, Pedrazzoli P, Carol-Stella C . Therapeutic relevance of CD34+ cell dose in blood cell transplantation for cancer therapy. J Clin Oncol 2000; 18: 1360–1377.

    Article  CAS  PubMed  Google Scholar 

  49. Watts MJ, Sullivan AM, Leverett D et al. Back-up bone marrow is frequently ineffective in patients with poor peripheral blood stem cell mobilization. J Clin Oncol 1998; 16: 1554–1560.

    Article  CAS  PubMed  Google Scholar 

  50. Ketterer N, Salles G, Raba M et al. High CD34+ cell counts decrease hematologic toxicity of autologous peripheral blood progenitor cell transplantation. Blood 1998; 91: 3148–3155.

    Article  CAS  PubMed  Google Scholar 

  51. Bensinger WI, Martin PJ, Storer B et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Eng J Med 2001; 344: 175–181.

    Article  CAS  Google Scholar 

  52. Singhal S, Powles R, Kulkarni S et al. Comparison of marrow and blood cell yields from the same donors in a double-blind, randomized study of allogeneic marrow vs blood stem cell transplantation. Bone Marrow Transplant 2000; 25: 501–505.

    Article  CAS  PubMed  Google Scholar 

  53. Singhal S, Powles R, Treleaven J et al. A low CD34+ cell dose results in higher mortality and poorer survival after blood or marrow stem cell transplantation from HLA-identical siblings: should 2 × 106 CD34+ cells/kg be considered the minimum threshold? Bone Marrow Transplant 2000; 26: 489–496.

    Article  CAS  PubMed  Google Scholar 

  54. Sharp JG, Kessinger A, Lynch JC et al. Blood stem cell transplantation: factors influencing cellular immunological reconstitution. J Hematother Stem Cell Res 2000; 9: 971–981.

    Article  CAS  PubMed  Google Scholar 

  55. Morariu-Zamfir R, Rocha V, Devergie A et al. Influence of CD34+ marrow cell dose on outcome of HLA-identical sibling allogeneic bone marrow transplants in patients with chronic myeloid leukemia. Bone Marrow Transplant 2001; 27: 575–580.

    Article  CAS  PubMed  Google Scholar 

  56. Zaucha JM, Gooley T, Bensinger WI et al. CD34 cell dose in granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cell grafts affects engraftment kinetics and development of extensive chronic graft-versus-host disease after human leukocyte antigen-identical sibling transplantation. Blood 2001; 98: 3221–3227.

    Article  CAS  PubMed  Google Scholar 

  57. Urbano-Ispizua A, Carreras E, Marin P et al. Allogeneic transplantation of CD34+ selected cells from peripheral blood from human leukocyte antigen-identical siblings; detrimental effect of a high number of donor CD34+ cells? Blood 2001; 98: 2352–2357.

    Article  CAS  PubMed  Google Scholar 

  58. Vora AJ, Toh CH, Pel J, Greaves M . Use of granulocyte colony-stimulating factor (G-CSF) for mobilizing peripheral blood stem cells: risk of mobilizing clonal myeloma cells in patients with bone marrow infiltration. Br J Haematol 1994; 86: 180–182.

    Article  CAS  PubMed  Google Scholar 

  59. Brugger W, Bross KJ, Glatt M et al. Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors. Blood 1994; 83: 636–640.

    Article  CAS  PubMed  Google Scholar 

  60. Lemoli RM, Fortuna A, Motta MR et al. Concomitant mobilization of plasma cells and hematopoietic progenitors into peripheral blood of multiple myeloma patients; positive selection and transplantation of enriched CD34+ cells to remove circulating tumor cells. Blood 1996; 87:1625–1634.

    Article  CAS  PubMed  Google Scholar 

  61. Franklin WA, Glaspy J, Pflaumer SM et al. Incidence of tumor-cell contamination in leukapheresis products of breast cancer patients mobilized with stem cell factor and granulocyte colony-stimulating factor (G-CSF) or with G-CSF alone. Blood 1999; 94: 340–347.

    Article  CAS  PubMed  Google Scholar 

  62. Gazitt Y, Shaughnessy P, Liu Q . Differential mobilization of CD34+ cells and lymphoma cells in non-Hodgkin's lymphoma patients mobilized with different growth factors. J Hematother Stem Cell Res 2001; 10: 167–176.

    Article  CAS  PubMed  Google Scholar 

  63. Sugrue MW, Williams K, Pollock BH et al. Characterization and outcome of ‘hard to mobilize’ lymphoma patients undergoing autologous stem cell transplantation. Leuk Lymphoma 2000; 39: 509–519.

    Article  CAS  PubMed  Google Scholar 

  64. Stockerl-Goldstein KE, Reddy SA, Horning SF et al. Favorable treatment outcome in non-Hodgkin's lymphoma patients with ‘poor’ mobilization of peripheral blood progenitor cells. Biol Blood Marrow Transplant 2000; 6: 506–512.

    Article  CAS  PubMed  Google Scholar 

  65. Kessinger A, Bierman PJ, Cowles MK et al. Mobilized versus non-mobilized peripheral stem cell transplantation after high dose therapy for low grade non-Hodgkin lymphoma. Cancer Res Ther Control 1998; 5: 113–119.

    Google Scholar 

  66. Boccadoro M, Omede P, Dominietto A et al. Multiple myeloma: the number of reinfused plasma cells does not influence outcome of patients treated with intensified chemotherapy and PBPC support. Bone Marrow Transplant 2000; 25: 25–29.

    Article  CAS  PubMed  Google Scholar 

  67. Cooper BW, Moss TH, Ross AA et al. Occult tumor contamination of hematopoietic stem-cell products does not affect clinical outcome of autologous transplantation in patients with metastatic breast cancer. J Clin Oncol 1998; 16: 3509–3517.

    Article  CAS  PubMed  Google Scholar 

  68. Watts MJ, Ings SJ, Flynn M et al. Remobilization of patients who fail to achieve minimal progenitor thresholds at the first attempt is clinically worthwhile. Br J Haematol 2000; 111: 287–291.

    CAS  PubMed  Google Scholar 

  69. Perry AR, Watts MJ, Peniket AH et al. Progenitor cell yields are frequently poor in patients with histologically indolent lymphomas especially when mobilized within 6 months of previous chemotherapy. Bone Marrow Transplant 1998; 21: 1201–1205.

    Article  CAS  PubMed  Google Scholar 

  70. Brugger W, Bross K, Frisch J et al. Mobilization of peripheral blood progenitors by sequential administration of interleukin-3 and granulocyte-macrophage colony-stimulating factor following polychemotherapy with etoposide, ifosfamide and cisplatin. Blood 1992; 79: 1193–1200.

    Article  CAS  PubMed  Google Scholar 

  71. Haas R, Mohle R, Fruehauf S et al. Patient characteristics associated with successful mobilizing and autografting of peripheral blood progenitor cells in malignant lymphoma. Blood 1992; 83: 3787–3794.

    Article  Google Scholar 

  72. Stewart DA, Guo D, Luider J et al. The CD3−16+56+ NK cell count independently predicts autologous blood stem cell mobilization. Bone Marrow Transplant 2001; 27: 1237–1243.

    Article  CAS  PubMed  Google Scholar 

  73. Zimmerman TM, Michelson GC, Mick R et al. Timing of platelet recovery is associated with adequacy of leukapheresis product yield after cyclophosphamide and G-CSF in patients with lymphoma. J Clin Apheresis 1999; 14: 31–34.

    Article  CAS  PubMed  Google Scholar 

  74. Kotasek D, Shepherd KM, Sage RE et al. Factors affecting blood stem cell collections following high-dose cyclophosphamide mobilization in lymphoma, myeloma and solid tumors. Bone Marrow Transplant 1992; 9: 11–17.

    CAS  PubMed  Google Scholar 

  75. Koumakis G, Vassiolmanolakis M, Hatzichristou H et al. Predictive factors affecting mobilization and peripheral blood stem cell collection using single apheresis for rescuing patients after high-dose chemotherapy in various malignancies. Bone Marrow Transplant 1996; 18: 1065–1072.

    CAS  PubMed  Google Scholar 

  76. Canales MA, Fernandez-Jimenez MC, Martin A et al. Identification of factors associated with poor peripheral blood progenitor cell mobilization in Hodgkin's disease. Haematologica 2001; 86: 494–498.

    CAS  PubMed  Google Scholar 

  77. Fruehauf S, Haas R, Conradt C et al. Peripheral blood progenitor cell (PBPC) counts during steady state hematopoiesis allow to estimate the yield of mobilized PBPC after filgrastim (R-met HuG-CSF) supported cytotoxic chemotherapy. Blood 1995; 85: 2619–2626.

    Article  CAS  PubMed  Google Scholar 

  78. Demirkazik A, Kessinger A, Lynch J et al. Effect of prior therapy and bone marrow metastases on progenitor cell content of blood stem cell harvests in breast cancer patients. Biol Blood Marrow Transplant 2002; 8: 268–272.

    Article  PubMed  Google Scholar 

  79. Benekli M, Shafi F, Qureshi A et al. The effect of rituximab on peripheral blood stem cell mobilization in non-Hodgkin's lymphoma. Proc ASCO 2002; 21: 417a (Abstr. 1666).

    Google Scholar 

  80. Voso MT, Pantel G, Weis M et al. In vivo depletion of B cells using a combination of high-dose cytosine arabinoside/mitoxantrone and rituximab for autografting in patients with non-Hodgkin's lymphoma. Br J Haematol 2000; 109: 729–735.

    Article  CAS  PubMed  Google Scholar 

  81. Bensinger WI, Clift RA, Anasetti C et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony stimulating factor. Stem Cells 1996; 14: 90–105.

    Article  CAS  PubMed  Google Scholar 

  82. Wiesneth M, Schreiner T, Friedrich A et al. Mobilization and collection of allogeneic peripheral blood progenitor cells for transplantation. Bone Marrow Transplant 1998; 21 (Suppl. 3): 21–24.

    Google Scholar 

  83. Bishop MR, Tarantolo SR, Bierman PH et al. Predictive factors for the identification of allogeneic blood stem cell donors as ‘poor mobilizers’ prior to stem cell collections. Blood 1997; 90 (Suppl. 1): 592a (Abstr. 2632).

    Google Scholar 

  84. Anderlini P, Korbling M . The use of mobilized peripheral blood stem cells from normal donors for allografting. Stem Cells 1997; 15: 9–17.

    Article  CAS  PubMed  Google Scholar 

  85. Holm M, Hokland P . Not all healthy donors mobilize hematopoietic progenitor cells sufficiently after G-CSF administration to allow for subsequent CD34 purification of the leukapheresis product. J Hematother 1998; 7: 111–113 (Letter).

    Article  CAS  PubMed  Google Scholar 

  86. Roberts AW, Foote S, Alexander WS et al. Genetic influences determining progenitor cell mobilization and leukocytosis induced by granulocyte colony-stimulating factor. Blood 1997; 89: 2736–2744.

    Article  CAS  PubMed  Google Scholar 

  87. Kessinger A, Mann S, Murphy BO et al. Circulating factors may be responsible for strain-specific responses to mobilizing cytokines. Exp Hematol 2001; 29: 775–778.

    Article  CAS  PubMed  Google Scholar 

  88. Sharp JG, Kessinger A, Clausen SR et al. Concurrent partial body radiation prevents cytokine mobilization of blood progenitor cells: an effect mediated by a circulating factor. J Hematother 1998; 7: 343–349.

    Article  CAS  PubMed  Google Scholar 

  89. Kessinger A, Sharp JG . Mobilization of blood stem cells. Stem Cells 1998; 16 (Suppl. 1): 139–144.

    PubMed  Google Scholar 

  90. Bociek RG, Lynch JC, Yee GC et al. Outcome and factors associated with slow mobilization of peripheral blood progenitor cells (PBPC) in patients undergoing autologous transplantation for non-Hodgkin's lymphoma (NHL). Blood 2001; 98: 861a (Abstr. 3575).

    Google Scholar 

  91. Papayannopoulou T, Nakamoto B . Peripheralization of hematopoietic progenitors in primates treated with anti-VLA4 integrin. Proc Natl Acad Sci USA 1993; 90: 9374–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gazitt Y, Shaughnessy P, Liu Q . Expression of adhesion molecules on CD34+ cells in peripheral blood of non-Hodgkin's lymphoma patients mobilized with different growth factors. Stem Cells 2001; 19: 134–143.

    Article  CAS  PubMed  Google Scholar 

  93. Aiuti A, Webb IJ, Bleul C et al. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 1997; 185: 111–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gazitt Y, Liu Q . Plasma levels of SDF-1 and expression of SDF-1 receptor on CD34+ cells in mobilized peripheral blood of non-Hodgkin's lymphoma patients. Stem Cells 2001; 19: 35–45.

    Google Scholar 

  95. Gazitt Y, Liu Q . High steady-state plasma levels of flt3-ligand in the peripheral blood is a good predictor for poor mobilization of CD34+ PBSC in patients undergoing high-dose chemotherapy and stem cell rescue. J Hematother Stem Cell Res 2000; 9: 285–293.

    Article  CAS  PubMed  Google Scholar 

  96. Dettke M, Jurko S, Ruger BM et al. Increased serum flt3-ligand in healthy donors undergoing granulocyte colony-stimulating factor-induced peripheral stem cell mobilization. J Hematother Stem Cell Res 2001; 10: 317–320.

    Article  CAS  PubMed  Google Scholar 

  97. Fraipont V, Sautois B, Baudoux E et al. Successful mobilization of peripheral blood HPCs with G-CSF alone in patients failing to achieve sufficient numbers of CD34+ cells and/or CFU-GM with chemotherapy and G-CSF. Transfusion 2000; 40: 339–347.

    Article  CAS  PubMed  Google Scholar 

  98. Weaver CH, Tauer K, Zhen B et al. Second attempts at mobilization of peripheral blood stem cells in patients with initial low CD34+ cell yields. J Hematother 1998; 7: 241–249.

    Article  CAS  PubMed  Google Scholar 

  99. Bashey A, Corringham S, Gilpin E et al. Simultaneous administration of G-CSF and GM-CSF for re-mobilization in patients with inadequate initial progenitor cell collections for autologous transplantation. Cytotherapy 2000; 2: 195–200.

    Article  CAS  PubMed  Google Scholar 

  100. Rick O, Beyer J, Kingreen D et al. Successful autologous bone marrow rescue in patients who failed peripheral blood stem cell mobilization. Ann Hematol 2000; 79: 681–686.

    Article  CAS  PubMed  Google Scholar 

  101. Kessinger A, Armitage JO, Landmark JD et al. Autologous peripheral hematopoietic stem cell transplantation restores hematopoietic function following marrow ablative therapy. Blood 1988; 71: 723–727.

    Article  CAS  PubMed  Google Scholar 

  102. Comenzo R, Malachowski M, Miller K et al. Large-volume leukapheresis for collection of mononuclear cells for hematopoietic rescue in Hodgkin's disease. Transfusion 1995; 35: 42–45.

    Article  CAS  PubMed  Google Scholar 

  103. Lie AK, Rawling TP, Bayly JL, To LB . Progenitor cell yield in sequential blood stem cell mobilization in the same patients: insights into chemotherapy dose escalation and combination of haematopoietic growth factor and chemotherapy. Br J Haematol 1996; 95: 39–44.

    Article  CAS  PubMed  Google Scholar 

  104. Vallejo C, Lozano ML, Ortuno F et al. Re-mobilization of peripheral blood progenitor cells in a short time interval fails to achieve effective progenitor cell yields. Bone Marrow Transplant 2000; 26: 351–352.

    Article  CAS  PubMed  Google Scholar 

  105. Anderlini P, Lauppe J, Przepiorka D et al. Peripheral blood stem cell apheresis in normal donors: feasibility and yield of second collections. Br J Haematol 1997; 96: 415–427.

    Article  CAS  PubMed  Google Scholar 

  106. Tichelli A, Passweg J, Hoffmann T et al. Repeated peripheral stem cell mobilization in healthy donors: time-dependent changes in mobilization efficiency. Br J Haematol 1999; 106: 152–158.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessinger, A., Sharp, J. The whys and hows of hematopoietic progenitor and stem cell mobilization. Bone Marrow Transplant 31, 319–329 (2003). https://doi.org/10.1038/sj.bmt.1703837

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1703837

Keywords

This article is cited by

Search

Quick links