Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Progenitor Cell Mobilisation

Large-scale mobilization and isolation of CD34+ cells from normal donors

Abstract

We describe collection and purification of peripheral blood CD34+ cells from volunteer, normal donors and allogeneic stem cell donors. A total of 98 aphereses were performed on 68 volunteer donors using peripheral venous access. The mean number of nucleated cells collected was 4.6 × 1010 which included 1.9 × 108CD34+ cells corresponding to 2.7 × 106 CD34+ cells/kg. The number of CD34+ cells collected did not differ between males and females but did correlate with the donor's weight and the total number of nucleated cells collected. The Nexell Isolex 300i cell separator was used to isolate CD34+ cells from 30 of the collections. A mean of 0.36% of the total cells was recovered and included 43 ± 18% of the CD34+ cells. CD34+ cells represented 85 ± 11% of the recovered cells. The total number of CD34+ cells recovered was not influenced by the number of nucleated cells placed on the Isolex 300i. The percentage of CD34+ cells recovered was not related to the number of CD34+ cells placed on the Isolex 300i. The purity of the final product was influenced by the number of CD34+ cells but not the total number of nucleated cells. An additional 38 CD34+ cell isolations were performed on normal allogeneic stem cell donors with similar results. These observations further support the safety and feasibility of peripheral blood CD34+ cell collection and purification. Bone Marrow Transplantation (2000) 26, 1271–1279.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Anderlini P, Przepiorka D, Seong C et al. Factors affecting mobilization of CD34+ cells in normal donors treated with filgrastim Transfusion 1997 37: 507–512

    Article  CAS  Google Scholar 

  2. Anderlini P, Korbling M, Dale D et al. Allogeneic blood stem cell transplantation: considerations for donors Blood 1997 90: 903–908

    CAS  PubMed  Google Scholar 

  3. Tabilio A, Falzetti F, Giannoni C et al. Stem cell mobilization in normal donors J Hematother 1997 6: 227–234

    Article  CAS  Google Scholar 

  4. Hoglund M, Smedmyr B, Simonsson B et al. Dose-dependent mobilisation of haematopoietic progenitor cells in healthy volunteers receiving glycosylated rHuG-CSF Bone Marrow Transplant 1996 18: 19–27

    CAS  PubMed  Google Scholar 

  5. Miflin G, Charley C, Stainer C et al. Stem cell mobilization in normal donors for allogeneic transplantation: analysis of safety and factors affecting efficacy Br J Haematol 1996 95: 345–348

    Article  CAS  Google Scholar 

  6. Grigg AP, Roberts AW, Raunow H et al. Optimizing dose and scheduling of filgrastim (granulocyte colony-stimulating factor) for mobilization and collection of peripheral blood progenitor cells in normal volunteers Blood 1995 86: 4437–4445

    CAS  PubMed  Google Scholar 

  7. Bensinger W, Appelbaum F, Rowley S et al. Factors that influence collection and engraftment of autologous peripheral-blood stem cells J Clin Oncol 1995 13: 2547–2555

    Article  CAS  Google Scholar 

  8. Dagher R, Kreissman S, Robertson KA et al. High dose chemotherapy with autologous peripheral blood progenitor cell transplantation in an anephric child with multiply recurrent Wilms tumor J Pediatr Hematol Oncol 1998 20: 357–360

    Article  CAS  Google Scholar 

  9. Pavletic ZS, Bishop MR, Tarantolo SR et al. Hematopoietic recovery after allogeneic blood stem-cell transplantation compared with bone marrow transplantation in patients with hematologic malignancies J Clin Oncol 1997 15: 1608–1616

    Article  CAS  Google Scholar 

  10. Ottinger HD, Beelen DW, Scheulen B et al. Improved immune reconstitution after allotransplantation of peripheral blood stem cells instead of bone marrow Blood 1996 88: 2775–2779

    CAS  PubMed  Google Scholar 

  11. Schmitz N, Dreger P, Suttorp M et al. Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by filgrastim (granulocyte colony-stimulating factor) Blood 1995 85: 1666–1672

    CAS  PubMed  Google Scholar 

  12. Bensinger WI, Weaver CH, Appelbaum FR et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor Blood 1995 85: 1655–1658

    CAS  PubMed  Google Scholar 

  13. Russell NH, Hunter AE . Peripheral blood stem cells for allogeneic transplantation Bone Marrow Transplant 1994 13: 353–355

    CAS  PubMed  Google Scholar 

  14. Shpall EJ, Jones RB, Bearman SI et al. Transplantation of enriched CD34-positive autologous marrow into breast cancer patients following high-dose chemotherapy: influence of CD34-positive peripheral-blood progenitors and growth factors on engraftment J Clin Oncol 1994 12: 28–36

    Article  CAS  Google Scholar 

  15. Berenson RJ, Bensinger WI, Hill RS et al. Engraftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma Blood 1991 77: 1717–1722

    CAS  PubMed  Google Scholar 

  16. Vescio R, Schiller G, Stewart AK et al. Multicenter phase III trial to evaluate CD34(+) selected versus unselected autologous peripheral blood progenitor cell transplantation in multiple myeloma Blood 1999 93: 1858–1868

    CAS  PubMed  Google Scholar 

  17. Mapara MY, Korner IJ, Hildebrandt M et al. Monitoring of tumor cell purging after highly efficient immunomagnetic selection of CD34 cells from leukapheresis products in breast cancer patients: comparison of immunocytochemical tumor cell staining and reverse transcriptase-polymerase chain reaction Blood 1997 89: 337–344

    CAS  PubMed  Google Scholar 

  18. Cornetta K, Gharpure V, Mills B et al. Rapid engraftment after allogeneic transplantation using CD34-enriched marrow cells Bone Marrow Transplant 1998 21: 65–71

    Article  CAS  Google Scholar 

  19. Noga SJ, Seber A, Davis JM et al. CD34 augmentation improves allogeneic T cell-depleted bone marrow engraftment J Hematother 1998 7: 151–157

    Article  CAS  Google Scholar 

  20. Cottler-Fox M, Cipolone K, Yu M et al. Positive selection of CD34+ hematopoietic cells using an immunoaffinity column results in T cell-depletion equivalent to elutriation Exp Hematol 1995 23: 320–322

    CAS  PubMed  Google Scholar 

  21. David S, Boiron JM, Dupouy M et al. Expansion of blood CD34+ cells: committed precursor expansion does not affect immature hematopoietic progenitors J Hematother 1997 6: 151–158

    Article  CAS  Google Scholar 

  22. Williams SF, Lee WJ, Bender JG et al. Selection and expansion of peripheral blood CD34+ cells in autologous stem cell transplantation for breast cancer Blood 1996 87: 1687–1691

    CAS  PubMed  Google Scholar 

  23. Abonour R, Williams DA, Einhorn L et al. Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells Nature Med 2000 6: 652–658

    Article  CAS  Google Scholar 

  24. Veena P, Traycoff CM, Williams DA et al. Delayed targeting of cytokine-nonresponsive human bone marrow CD34(+) cells with retrovirus-mediated gene transfer enhances transduction efficiency and long-term expression of transduced genes Blood 1998 91: 3693–3701

    CAS  PubMed  Google Scholar 

  25. Kiem HP, Andrews RG, Morris J et al. Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment CH-296 in combination with interleukin-6, stem cell factor, FLT-3 ligand, and megakaryocyte growth and development factor Blood 1998 92: 1878–1886

    CAS  PubMed  Google Scholar 

  26. Dunbar CE, Young NS . Gene marking and gene therapy directed at primary hematopoietic cells Curr Opin Hematol 1996 3: 430–437

    Article  CAS  Google Scholar 

  27. Huntenburg CC, Kunkel LA, Schneidkraut MJ . CD34+ cell engraftment, ex vivo expansion, and malignant cell depletion following immunomagnetic selection J Hematother 1998 7: 175–183

    Article  CAS  Google Scholar 

  28. Watts MJ, Sullivan AM, Ings SJ et al. Evaluation of clinical scale CD34+ cell purification: experience of 71 immunoaffinity column procedures Bone Marrow Transplant 1997 20: 157–162

    Article  CAS  Google Scholar 

  29. Kobbe G, Soehngen D, Heyll A et al. Large volume leukapheresis maximizes the progenitor cell yield for allogeneic peripheral blood progenitor donation J Hematother 1997 6: 125–131

    Article  CAS  Google Scholar 

  30. Benjamin RJ, Linsley L, Fountain D et al. Preapheresis peripheral blood CD34+ mononuclear cell counts as predictors of progenitor cell yield Transfusion 1997 37: 79–85

    Article  CAS  Google Scholar 

  31. Demirer T, Bensinger WI, Buckner CD . Peripheral blood stem cell mobilization for high-dose chemotherapy J Hematother 1999 8: 103–113

    Article  CAS  Google Scholar 

  32. Dreger P, Viehmann K, Steinmann J et al. G-CSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: comparison of T cell depletion strategies using different CD34+ selection systems or CAMPATH-1 Exp Hematol 1995 23: 147–154

    CAS  PubMed  Google Scholar 

  33. Lane TA, Law P, Maruyama M et al. Harvesting and enrichment of hematopoietic progenitor cells mobilized into the peripheral blood of normal donors by granulocyte–macrophage colony-stimulating factor (GM-CSF) or G-CSF: potential role in allogeneic marrow transplantation Blood 1995 85: 275–282

    CAS  PubMed  Google Scholar 

  34. Kawano Y, Takaue Y, Watanabe A et al. Partially mismatched pediatric transplants with allogeneic CD34(+) blood cells from a related donor Blood 1998 92: 3123–3130

    CAS  PubMed  Google Scholar 

  35. Zimmerman TM, Bender JG, Lee WJ et al. Large-scale selection of CD34+ peripheral blood progenitors and expansion of neutrophil precursors for clinical applications J Hematother 1996 5: 247–253

    Article  CAS  Google Scholar 

  36. Stainer CJ, Miflin G, Anderson S et al. A comparison of two different systems for CD34+ selection of autologous or allogeneic PBSC collections J Hematother 1998 7: 375–383

    Article  CAS  Google Scholar 

  37. Bjorkstrand B, Sundman-Engberg B, Christensson B et al. A controlled comparison of two different clinical grade devices for CD34+ cell selection of autologous blood stem cell grafts J Hematother 1999 8: 75–80

    Article  CAS  Google Scholar 

  38. Abonour R, Scott KM, Kunkel LA et al. Autologous transplantation of mobilized peripheral blood CD34+ cells selected by immunomagnetic procedures in patients with multiple myeloma Bone Marrow Transplant 1998 22: 957–963

    Article  CAS  Google Scholar 

  39. Alcorn MJ, Holyoake TL, Richmond L et al. CD34-positive cells isolated from cryopreserved peripheral-blood progenitor cells can be expanded ex vivo and used for transplantation with little or no toxicity J Clin Oncol 1996 14: 1839–1847

    Article  CAS  Google Scholar 

  40. David S, Rice A, Vianes I et al. Expansion of blood CD34 positive cells: committed precursors expansion does not affect immature hematopoietic progenitors Nouv Rev Fran Hematol 1995 37: 343–349

    CAS  Google Scholar 

  41. Farley TJ, Ahmed T, Fitzgerald M et al. Optimization of CD34+ cell selection using immunomagnetic beads: implications for use in cryopreserved peripheral blood stem cell collections J Hematother 1997 6: 53–60

    Article  CAS  Google Scholar 

  42. Hawkins TE, Marley SB, O'Brien SG et al. CD34+ cell selection in chronic phase chronic myeloid leukaemia: a comparison of laboratory grade columns Bone Marrow Transplant 1997 20: 409–413

    Article  CAS  Google Scholar 

  43. Hohaus S, Pforsich M, Murea S et al. Immunomagnetic selection of CD34+ peripheral blood stem cells for autografting in patients with breast cancer Br J Haematol 1997 97: 881–888

    Article  CAS  Google Scholar 

  44. Kajiume T, Kawano Y, Takaue Y et al. New consecutive high-dose chemotherapy modality with fractionated blood stem cell support in the treatment of high-risk pediatric solid tumors: a feasibility study Bone Marrow Transplant 1998 21: 147–151

    Article  CAS  Google Scholar 

  45. Kawano Y, Takaue Y, Law P et al. Clinically applicable bulk isolation of blood CD34+ cells for autografting in children Bone Marrow Transplant 1998 22: 1011–1017

    Article  CAS  Google Scholar 

  46. Kim HJ, Okamoto Y, Ito M et al. Evaluation of a cytokine combination including thrombopoietin for improved transduction of a retroviral gene into G-CSF-mobilized CD34+ human blood cells Stem Cells 1997 15: 347–352

    Article  CAS  Google Scholar 

  47. Kowalkowski KL, Alzona MT, Aono FM et al. Ex vivo generation of dendritic cells from CD34+ cells in gas-permeable containers under serum-free conditions J Hematother 1998 7: 403–411

    Article  CAS  Google Scholar 

  48. Kruger W, Gruber M, Hennings S et al. Purging and haemopoietic progenitor cell selection by CD34+ cell separation Bone Marrow Transplant 1998 21: 665–671

    Article  CAS  Google Scholar 

  49. Mapara MY, Korner IJ, Lentzsch S et al. Combined positive/negative purging and transplantation of peripheral blood progenitor cell autografts in breast cancer patients: a pilot study Exp Hematol 1999 27: 169–175

    Article  CAS  Google Scholar 

  50. McNiece IK, Stoney GB, Kern BP et al. CD34+ cell selection from frozen cord blood products using the Isolex 300i and CliniMACS CD34 selection devices J Hematother 1998 7: 457–461

    Article  CAS  Google Scholar 

  51. Ogura M, Kagami Y, Suzuki R et al. Phase I/II trial of cure-oriented high-dose chemoradiotherapy with transplantation of CD34+ peripheral blood stem cells purified by the immunomagnetic bead method for refractory hematological malignancies. Nagoya CD34+ PBSCT Study Group Cancer Chemother Pharmacol 1997 40: S51–S57

    Article  CAS  Google Scholar 

  52. Papadimitriou CA, Roots A, Koenigsmann M et al. Immunomagnetic selection of CD34+ cells from fresh peripheral blood mononuclear cell preparations using two different separation techniques J Hematother 1995 4: 539–544

    Article  CAS  Google Scholar 

  53. Paulus U, Schmitz N, Viehmann K et al. Combined positive/negative selection for highly effective purging of PBPC grafts: towards clinical application in patients with B-CLL Bone Marrow Transplant 1997 20: 415–420

    Article  CAS  Google Scholar 

  54. Paulus U, Dreger P, Viehmann K et al. Purging peripheral blood progenitor cell grafts from lymphoma cells: quantitative comparison of immunomagnetic CD34+ selection systems Stem Cells 1997 15: 297–304

    Article  CAS  Google Scholar 

  55. Roots-Weiss A, Papadimitriou C, Serve H et al. The efficiency of tumor cell purging using immunomagnetic CD34+ cell separation systems Bone Marrow Transplant 1997 19: 1239–1246

    Article  CAS  Google Scholar 

  56. Rowley SD, Loken M, Radich J et al. Isolation of CD34+ cells from blood stem cell components using the Baxter Isolex system Bone Marrow Transplant 1998 21: 1253–1262

    Article  CAS  Google Scholar 

  57. Scime R, Indovina A, Santoro A et al. PBSC mobilization, collection and positive selection in patients with chronic lymphocytic leukemia Bone Marrow Transplant 1998 22: 1159–1165

    Article  CAS  Google Scholar 

  58. Thomas L, Mansour V, Jain R et al. Use of the CS-3000 Plus to prepare apheresed blood cells for immunomagnetic positive cell selection J Hematother 1995 4: 315–321

    Article  CAS  Google Scholar 

  59. Urbano-Ispizua A, Solano C, Brunet S et al. Allogeneic transplantation of selected CD34+ cells from peripheral blood: experience of 62 cases using immunoadsorption or immunomagnetic technique. Spanish Group of Allo-PBT Bone Marrow Transplant 1998 22: 519–525

    Article  CAS  Google Scholar 

  60. Voso MT, Hohaus S, Moos M et al. Autografting with CD34+ peripheral blood stem cells: retained engraftment capability and reduced tumour cell content Br J Haematol 1999 104: 382–391

    Article  CAS  Google Scholar 

  61. Elwood N, Zogos H, Willson T et al. Retroviral transduction of human progenitor cells: use of granulocyte colony-stimulating factor plus stem cell factor to mobilize progenitor cells in vivo and stimulation by Flt3/Flk-2 ligand in vitro Blood 1996 88: 4452–4462

    CAS  PubMed  Google Scholar 

  62. Anderlini P, Korbling M . The use of mobilized peripheral blood stem cells from normal donors for allografting Stem Cells 1997 15: 9–17

    Article  CAS  Google Scholar 

  63. Molineux G, McCrea C, Yan XQ et al. Flt-3 ligand synergizes with granulocyte colony-stimulating factor to increase neutrophil numbers and to mobilize peripheral blood stem cells with long-term repopulating potential Blood 1997 89: 3998–4004

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Nexell, Inc for providing the Isolex 300i columns and AMGEN for providing the G-CSF. Drs Bob Briddell and Ian McNiece provided data on CD34+ counts from apheresis products provided to AMGEN and Elizabeth Cox supplied data on the allogeneic stem cell donors. This work was supported by the Centers of Excellence in Molecular Hematology (NIDDK P30DK49218), National Centers for Research Resources (NIH M01 RR00750) (RA), and the Jonathan and Jennifer Simmons Charitable Trust.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croop, J., Cooper, R., Seshadri, R. et al. Large-scale mobilization and isolation of CD34+ cells from normal donors. Bone Marrow Transplant 26, 1271–1279 (2000). https://doi.org/10.1038/sj.bmt.1702720

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1702720

Keywords

This article is cited by

Search

Quick links