Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Assessment of carotenoid status and the relation to glycaemic control in type I diabetics: a follow-up study

Abstract

Objective:

To assess the carotenoid status in young type I diabetic patients and its relationship to the glycaemic control of the disease.

Design:

A follow-up study.

Setting:

Hospital Universitario Puerta de Hierro, Health Area VI of Madrid (Spain).

Subjects:

Forty-seven type I diabetic patients, followed for 2.5 years.

Interventions:

Coinciding with physical examination and laboratory tests, serum levels of carotenoids were analysed by HPLC, and dietary intake of carotenoids was evaluated by a semiquantitative food frequency questionnaire and 3-day prospective dietary records.

Results:

In type I diabetic patients, average intake, serum levels and correlations between diet and serum levels of carotenoids were comparable to those in reference non-diabetic groups. Between-subjects seasonal variations were observed for β-cryptoxanthin intake and serum levels (higher in winter) and serum lycopene (higher in summer). Significant within-subjects seasonal changes were shown for dietary and serum β-cryptoxanthin and serum β-carotene. Serum carotenoids were unrelated to glycaemic control markers. Subjects with clinically acceptable glycaemic control showed lower lycopene intake than those with unacceptable control. Intake of carotenoids did not explain variance in insulin dose, fasting glycaemia, fructosamine or HbA1c. With the exception of lycopene, serum carotenoids were predicted by dietary intake, but in no case by fasting glycaemia, HbA1c or fructosamine.

Conclusion:

In type I diabetic patients, serum carotenoid concentrations and their variance are determined by dietary intake patterns, and are unrelated to the glycaemic control of the disease, as assessed by biochemical markers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Ascherio A, Stampfer M, Colditz GA, Rimm EB, Litin L, Willet WC (1992). Correlations of vitamin A and E intakes with plasma concentrations of carotenoids and tocopherols among American men and women. J Nutr 122, 1792–1801.

    Article  CAS  Google Scholar 

  • Basu TK, Basualdo C (1997). Vitamin A homeostasis and diabetes mellitus. Nutrition 13 (9), 804–806.

    Article  CAS  Google Scholar 

  • Bates JH, Young IS, Galway L, Traub AI, Hadden DR (1997). Antioxidant status and lipid peroxidation in diabetic pregnancy. Br J Nutr 78, 523–532.

    Article  CAS  Google Scholar 

  • Bendich A, Olson JA (1989). Biological actions of carotenoids. FASEB J 3, 1927–1932.

    Article  CAS  Google Scholar 

  • Bertram JS, Bortkiewicz H (1995). Dietary carotenoids inhibit neoplastic transformation and modulate gene expression in mouse and human cells. Am J Clin Nutr 62 (Suppl), 1327S–1337S.

    Article  CAS  Google Scholar 

  • Brevik A, Andersen LF, Karlsen A, Trygg KU, Blomhoff R, Drevon CA (2004). Six carotenoids in plasma to assess recommended intake of fruits and vegetables in a controlled feeding study. Eur J Clin Nutr 58 (8), 1166–1173.

    Article  CAS  Google Scholar 

  • Bunce GE (1994). Nutrition and eye disease of the elderly. J Nutr Biochem 5, 66–77.

    Article  Google Scholar 

  • Burri BJ, Neidlinger TR, Cliford AJ (2001). Serum carotenoid depletion follows first-order kinetics in healthy adult women fed naturally low carotenoid diets. J Nutr 131, 2096–2100.

    Article  CAS  Google Scholar 

  • Ceriello A (2003). New insights on oxidative stress and diabetic complications may lead to a ‘causal’ antioxidant therapy. Diabetes Care 26, 1589–1596.

    Article  CAS  Google Scholar 

  • De Pee S, West C, Permaish D, Martuti S, Muhilal I, Hautvast J (1998). Orange juice is more effective than are dark green leafy vegetables in increasing serum concentrations of retinol and β-carotene in school-children in Indonesia. Am J Clin Nutr 68, 1058–1067.

    Article  CAS  Google Scholar 

  • Diabetes Control and Complications Trial Research Group (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329, 977–986.

  • Dierckx N, Horvath G, van Gils C, Vertommen J, van de Vliet J, De Leeuw I et al. (2003). Oxidative stress status in patients with diabetes mellitus: relationship to diet. Eur J Clin Nutr 57, 999–1008.

    Article  CAS  Google Scholar 

  • Dominguez C, Ruiz E, Gussinye M, Carrascosa A (1998). Oxidative stress at onset and in early stages of type 1 diabetes in children and adolescents. Diabetes Care 21, 1736–1742.

    Article  CAS  Google Scholar 

  • Freudenheim JL, Johnson NE, Wardrop RL (1987). Misclassification of nutrient intake of individuals and groups using one-, two-, three- and seven-day records. Am J Epidemiol 126 (4), 703–713.

    Article  CAS  Google Scholar 

  • Garrow JS (1995). Validation of methods for estimating habitual diet: proposed guidelines. Eur J Clin Nutr 49, 231–232.

    CAS  PubMed  Google Scholar 

  • Giugliano D, Ceriello A, Paolisso G (1996). Oxidative stress and diabetic vascular complications. Diabetes Care 19 (3), 257–267.

    Article  CAS  Google Scholar 

  • Goodman DS, Blomstrand R, Werner B, Huang HS, Shiratori T (1966). The intestinal absorption and metabolism of β-carotene in man. J Clin Invest 45, 1615–1623.

    Article  CAS  Google Scholar 

  • Granado F, Olmedilla B, Blanco I (2001). Bioavailability of α-+β-carotene in type 1 diabetic patients. Inn Food Sci Emerging Tech 2/3, 151–158.

    Article  Google Scholar 

  • Granado F, Olmedilla B, Blanco I (2004). Carotenoid depletion in serum of young type 1 diabetics fed low-carotenoid diets. Ann Nutr Metab 48 (4), 251–258.

    Article  CAS  Google Scholar 

  • Granado F, Olmedilla B, Blanco I, Rojas-Hidalgo E (1996). Major fruit and vegetable contributors to the main serum carotenoids in the Spanish diet. Eur J Clin Nutr 50 (4), 246–250.

    CAS  PubMed  Google Scholar 

  • Granado F, Olmedilla B, Gil-Martínez E, Blanco I, Millán I, Rojas-Hidalgo E (1998). Carotenoids, retinol and tocopherols in insulin-dependent diabetics and their immediate relatives. Clin Sci 94 (2), 189–195.

    Article  CAS  Google Scholar 

  • Granado-Lorencio F, Olmedilla-Alonso B (1999). Oxidative stress and antioxidant supplementation in type 1 diabetes. Diabetes Care 22, 870–871. (Letter).

    Article  CAS  Google Scholar 

  • Jarvinen R (1996). Epidemiological follow-up study on dietary antioxidant vitamins Doctoral Thesis. The Social Insurance Institution. Studies in Social Security and Health #11. Finland.

  • Kohlmeier L, Hastings SB (1995). Epidemiologic evidence of a role of carotenoids in cardiovascular disease prevention. Am J Clin Nutr 62 (Suppl), 1370S–1377S.

    Article  CAS  Google Scholar 

  • Kratz A, Ferraro M, Sluss P, Lewandrowski K (2004). Laboratory reference values. N Engl J Med 351, 1548–1563.

    Article  CAS  Google Scholar 

  • Krinsky NI (1994). The biological properties of carotenoids. Pure Appl Chem 66, 1003–1010.

    Article  Google Scholar 

  • Martín-Galán P, Carrascosa A, Gussinyé M, Domínguez C (2003). Biomarkers of diabetes-associated oxidative status in young diabetic patients with or without subclinical complications. Free Radic Biol Med 34 (12), 1563–1574.

    Article  Google Scholar 

  • Mooradian AD, Failla M, Hoogwerf B (1994). Selected vitamins and minerals in diabetes. Diabetes Care 17 (5), 464–479.

    Article  CAS  Google Scholar 

  • Ndahimana J, Dorchy H, Vertongen F (1996). Activité anti-oxydante érythrocytaire et plasmatique dans le diabéte de type I. Presse Med 25, 188–192.

    CAS  PubMed  Google Scholar 

  • Olmedilla B, Granado F, Blanco I, Rojas-Hidalgo E (1994). Seasonal and sex-related variations in serum levels of six carotenoids, retinol and α-tocopherol. Am J Clin Nutr 60, 106–110.

    Article  CAS  Google Scholar 

  • Olmedilla B, Granado F, Blanco I, Rojas-Hidalgo E (1996). Contenido de carotenoides en verduras y frutas de mayor consumo en España. Instituto Nacional de la Salud (INSALUD). Secretaría General, Madrid, Spain.

    Google Scholar 

  • Olmedilla B, Granado F, Gil-Martínez E, Blanco I, Rojas-Hidalgo E (1997). Reference levels of retinol, α-tocopherol and main carotenoids in serum of control and insulin-dependent diabetic Spanish subjects. Clin Chem 43 (6), 1066–1071.

    CAS  PubMed  Google Scholar 

  • Olmedilla B, Granado F, Southon S et al. (2001). Baseline serum concentrations of carotenoids, vitamins A, E, and C, in control subjects from five European countries. Brit J Nutr 85 (2), 227–238.

    Article  CAS  Google Scholar 

  • Olson JA (1993). Molecular actions of carotenoids. Ann NY Acad Sci 691, 156–167.

    Article  CAS  Google Scholar 

  • Packer L (1993). Antioxidant action of carotenoids in vitro and in vivo and protection against oxidation of human low-density lipoproteins. Ann NY Acad Sci 691, 48–60.

    Article  CAS  Google Scholar 

  • Poorvliet EJ, West CE (1993). The carotenoid content of foods with special reference to developing countries. Vitamin A Field Support Project (VITAL), Arlington, VA, USA.

    Google Scholar 

  • Riboli E, Pèquignot G, Repetto F et al. (1988). A comparative study of smoking, drinking and dietary habits in population samples in France, Italy, Spain and Switzerland. I. Study design and dietary habits. Rev Epidemiol Santé Publique 36, 151–165.

    CAS  PubMed  Google Scholar 

  • Scott KJ, Thurham DI, Hart D (1996). The correlation between the intake of lutein, lycopene and β-carotene from vegetables and fruits and blood plasma concentrations in a group of women aged 50–66 years in the UK. Br J Nutr 75, 409–418.

    Article  CAS  Google Scholar 

  • Sharpless K, Duewer DL (1995). Population distributions and intralaboratory reproducibility for fat-soluble vitamin-related compounds in human serum. Anal Chem 67 (23), 4416–4422.

    Article  CAS  Google Scholar 

  • Stahl W, Sies H (1992). Uptake of lycopene and its geometrical isomers is greater from heat-processed than from unprocessed tomato juice in humans. J Nutr 122, 2161–2166.

    Article  CAS  Google Scholar 

  • Steinmetz K, Potter JD (1996). Vegetables, fruits and cancer prevention: a review. J Am Diet Assoc 96, 1027–1039.

    Article  CAS  Google Scholar 

  • Stepp W, Khünau J, Schroeder H (1939). Las vitaminas y su utilización clínica. Bayer: Barcelona (Spain).

    Google Scholar 

  • Tangney C, Shekelle RB, Raynor W, Gale M, Betz FP (1987). Intra- and interindividual variation in measurements of β-carotene, retinol and tocopherols in diet and plasma. Am J Clin Nutr 45, 764–769.

    Article  CAS  Google Scholar 

  • Van den Berg H, Heseker H, Lamand M, Sänsdtrom B, Thurnham DI (1993). Flair Concerted Action No 10 Status Papers. Introduction, conclusions and recommendations. Int J Vit Nutr Res 63, 247–251.

    CAS  Google Scholar 

  • Van Vliet T, Schreurs WHP, van den Berg H (1995). Intestinal β-carotene absorption and cleavage in men: response of β-carotene and retinyl esters in the triglyceride-rich lipoprotein fraction after a single oral dose of β-carotene. Am J Clin Nutr 62, 110–116.

    Article  CAS  Google Scholar 

  • Vessby J, Basu S, Mohsen R, Berne C, Vessby B (2002). Oxidative stress and antioxidant status in type 1 diabetes mellitus. J Intern Med 25, 69–76.

    Article  Google Scholar 

  • Wolff SP (1993). Diabetes and free radicals. Br Med Bull 49, 642–652.

    Article  CAS  Google Scholar 

  • Yong L-C, Forman M, Beecher GR, Grauhard BI, Campbell WS, Reichman ME et al. (1994). Relationship between dietary intake and plasma concentrations of carotenoids in premenopausal women: application of the USDA-NCI carotenoid food-composition database. Am J Clin Nutr 60, 223–230.

    Article  CAS  Google Scholar 

  • Ziegler RG (1993). Carotenoids, cancer and clinical trials. Ann NY Acad Sci 691, 120–127.

    Article  Google Scholar 

Download references

Acknowledgements

The funding of Instituto de Salud Carlos III (RCMN C03/08) and Lilly, SA (Madrid, Spain) is acknowledged. We are grateful to Dr E Rojas-Hidalgo, MD, for his support, to Teresa Motilla Valeriano and Pilar Martínez Montero for blood collection and nursing care of the patients during the study, and to all the participants. We are also indebted to Martha Messman for preparing the manuscript. None of the authors had any personal or financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Granado-Lorencio.

Additional information

Guarantors: B Olmedilla and F Granado.

Contributors: FG and BO had the major responsibility for designing the study and writing the manuscript; FG, BO and IB performed analysis of serum and dietary carotenoids and FG and BO carried out the statistical analysis. FB and AS contributed to the clinical management and follow-up of the patients.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granado-Lorencio, F., Olmedilla-Alonso, B., Blanco-Navarro, I. et al. Assessment of carotenoid status and the relation to glycaemic control in type I diabetics: a follow-up study. Eur J Clin Nutr 60, 1000–1008 (2006). https://doi.org/10.1038/sj.ejcn.1602411

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1602411

Keywords

This article is cited by

Search

Quick links