Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Communication
  • Published:

Relation between calcium absorption and serum calcitriol in normal men: evidence for age-related intestinal resistance to calcitriol

Abstract

Objective: To obtain information on the causes of age-related bone loss in men and the concomitant decline in calcium absorption.

Design: Cross-sectional study.

Setting: Adelaide, South Australia, Australia.

Subjects: A total of 95 healthy, Caucasian men (age range 27–87 y).

Results: Calcium absorption declined with age (r=−0.46, P<0.0001), as did 24-h urine calcium, phosphate and creatinine (r>−0.21, P<0.05 for all); serum calcitriol and 25 hydroxyvitamin D did not change with age. Calcium absorption was related to serum calcitriol (r=0.20, P=0.05). An inverse relation between the residual deviations in calcium absorption, after allowing for its dependence on calcitriol, and age (F=5.4, P<0.005) was observed. The 24-h urinary calcium, phosphate and creatinine were all related to calcium absorption (r>0.41, P<0.0001). Forearm bone density fell with age (r=−0.45, P<0.0001) but was not related to calcium absorption, or markers of bone turnover.

Conclusions: In healthy Caucasian males (i) calcium absorption falls, but serum calcitriol does not change with age, (ii) the relation between calcium absorption and serum calcitriol changes with age, indicative of an intestinal resistance to calcitriol and (iii) calcium absorption is a significant determinant of 24-h urinary calcium excretion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Agnusdei D, Civitelli R, Camporeale A, Parisi G, Gennari L, Nardi P and Gennari C (1998): Age-related decline of bone mass and intestinal calcium absorption in normal males. Calcif. Tissue Int. 63, 197–201.

    Article  CAS  Google Scholar 

  • Angus RM & Eisman JA (1988): Osteoporosis: the role of calcium intake and supplementation. Med. J. Aust. 148, 630–633.

    CAS  PubMed  Google Scholar 

  • Bullamore JR, Gallagher JC, Wilkinson R, Nordin BEC & Marshall DH (1970): Effect of age on calcium absorption. Lancet 2, 535–557.

    Article  CAS  Google Scholar 

  • Clarke BL, Ebeling PR, Jones JD, Wahner HW, O'Fallon WM, Riggs BL & Fitzpatrick LA (1996): Changes in quantitative bone histomorphometry in aging healthy men. J. Clin. Endocrinol. Metab. 81, 2264–2270.

    CAS  PubMed  Google Scholar 

  • Davis JW, Ross PD, Vogel JM & Wasnich RD (1991): Age-related changes in bone mass among Japanese-American men. Bone Miner. 15, 227–236.

    Article  CAS  Google Scholar 

  • Devine A, Prince RL, Kerr DA, Dick IM, Criddle RA, Kent GN, Price RI & Webb PG (1993): Correlates of intestinal calcium absorption in women 10 years past the menopause. Calcif. Tissue Int. 52, 358–360.

    Article  CAS  Google Scholar 

  • Eastell R, Yergey AL, Vieira NE, Cedel SL, Kumar R & Riggs BL (1991): Interrelationship among vitamin D metabolism, true calcium absorption, parathyroid function, and age in women: evidence of an age-related intestinal resistance to 1,25-dihydroxyvitamin D action. J. Bone Miner. Res. 6, 125–132.

    Article  CAS  Google Scholar 

  • Ebeling PR, Sandgren ME, DiMagno EP, Lane AW, DeLuca HF & Riggs BL (1992): Evidence of an age-related decrease in intestinal responsiveness to vitamin D: relationship between serum 1,25-dihydroxyvitamin D3 and intestinal vitamin D receptor concentrations in normal women. J. Clin. Endocrinol. Metab. 75, 176–182.

    CAS  PubMed  Google Scholar 

  • Edelstein S, Charman M, Lawson DE & Kodicek E (1974): Competitive protein-binding assay for 25-hydroxycholecalciferol. Clin. Sci. Mol. Med. 46, 231–240.

    CAS  PubMed  Google Scholar 

  • Fatayerji D & Eastell R (1999): Age-related changes in bone turnover in men. J. Bone Miner. Res. 14, 1203–1210.

    Article  CAS  Google Scholar 

  • Fatayerji D, Mawer EB & Eastell R (2000): The role of insulin-like growth factor I in age-related changes in calcium homeostasis in men. J. Bone Miner. Res. 85, 4657–4662.

    CAS  Google Scholar 

  • Francis RM, Peacock M, Marshall DH, Horsman A & Aaron JE (1989): Spinal osteoporosis in men. Bone Miner. 5, 347–357.

    Article  CAS  Google Scholar 

  • Gallagher JC, Riggs BL, Eisman JA, Hamstra A, Arnaud CD & DeLuca HF (1979): Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients. J. Clin. Invest. 64, 729–736.

    Article  CAS  Google Scholar 

  • Heaney RP, Recker RR, Stegman MR & Moy AJ (1989): Calcium absorption in women: relationships to calcium intake, estrogen status, and age. J. Bone Miner. Res. 4, 469–475.

    Article  CAS  Google Scholar 

  • Jones G, Nguyen T, Sambrook P, Kelly PJ & Eisman JA (1994): Progressive loss of bone in the femoral neck in elderly people: longitudinal findings from the Dubbo osteoporosis epidemiology study. Br. Med. J. 309, 691–695.

    Article  CAS  Google Scholar 

  • Kamel S, Brazier M, Desmet G, Picard C, Mennecier I & Sebert J (1992): High-performance liquid chromatographic determination of 3-hydroxypyridinium derivatives as new markers of bone resorption. J. Chromatogr. 574, 255–260.

    Article  CAS  Google Scholar 

  • Khosla S, Melton Jr L, Atkinson EJ, O'Fallon WM, Klee GG & Riggs BL (1998): Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J. Clin. Endocrinol. Metab. 83, 2266–2274.

    CAS  PubMed  Google Scholar 

  • Morris HA, Need AG, Horowitz M, O'Loughlin PD & Nordin BE (1991): Calcium absorption in normal and osteoporotic postmenopausal women. Calcif. Tissue Int. 49, 240–243.

    Article  CAS  Google Scholar 

  • National Health and Medical Research Council (1991): Recommended Dietary Intakes for use in Australia. Australian Government Publishing Service, Canberra.

  • Need AG, Horowitz M, Philcox JC & Nordin BE (1984): 1,25-Dihydroxycalciferol and calcium therapy in osteoporosis with calcium malabsorption: dose response relationship of calcium absorption and indices of bone turnover. Miner. Electrolyte Metab. 11, 35–40.

    Google Scholar 

  • Need AG, Horowitz M, Philcox JC & Nordin BE (1987): Biochemical effects of a calcium supplement in osteoporotic postmenopausal women with normal absorption and malabsorption of calcium. Miner. Electrolyte. Metab. 13, 112–116.

    CAS  PubMed  Google Scholar 

  • Need AG, Morris HA, Horowitz M, Scopacasa F & Nordin BE (1998): Intestinal calcium absorption in men with spinal osteoporosis. Clin. Endocrinol. Oxf. 48, 163–168.

    Article  CAS  Google Scholar 

  • Need AG, Horowitz M, Morris HA & Nordin BEC (2000): Vitamin D status: effects on parathyroid hormone and 1,25-dihydroxyvitamin D in postmenopausal women. Am. J. Clin. Nutr. 71, 1577–1581.

    Article  CAS  Google Scholar 

  • Nordin BE & Morris HA (1992): Osteoporosis and vitamin D. J. Cell Biochem. 49, 19–25.

    Article  CAS  Google Scholar 

  • Nordin BE, Morris HA, Wishart JM, Scopacasa F, Horowitz M, Need AG & Clifton PM (1998): Modification and validation of a single-isotope radiocalcium absorption test. J. Nucl. Med. 39, 108–113.

    CAS  PubMed  Google Scholar 

  • Nordin BE & Polley KJ (1987): Metabolic consequences of the meno-pause A cross-sectional, longitudinal, and intervention study on 557 normal postmenopausal women. Calcif. Tissue Int. 41, S1–S59.

    Article  Google Scholar 

  • Nordin BEC, Chatterton BE, Steurer TA & Walker CJ (1986): Forearm bone mineral content does not decline with age in premenopausal women. Clin. Orthop. 211, 252–256.

    Google Scholar 

  • Nordin BEC, Robertson A, Seamark RF, Bridges A, Philcox JC, Need AG, Horowitz M, Morris HA & Deam S (1985): The relation between calcium absorption, serum dehydroepiandrosterone, and vertebral mineral density in postmenopausal women. J. Clin. Endocrinol. Metab. 60, 651–657.

    Article  CAS  Google Scholar 

  • Orwoll ES & Meier DE (1986): Alterations in calcium, vitamin D, and parathyroid hormone physiology in normal men with aging: relationship to development of senile osteopenia. J. Clin. Endocrinol. Metab. 63, 1262–1269.

    Article  CAS  Google Scholar 

  • Resch H, Pietschmann P, Kudlacek S, Woloszczuk W, Krexner E, Bernecker P & Willvonseder R (1994): Influence of sex and age on biochemical bone metabolism parameters. Miner. Electrolyte Metab. 20, 117–121.

    CAS  PubMed  Google Scholar 

  • Scopacasa F, Need AG, Horowitz M, Wishart JM, Morris HA & Nordin BEC (2002): Bone density and bone-related biochemical variables in normal men: a longitudinal study. J. Gerontol. Med. Sci. 57, M385–M391.

    Article  CAS  Google Scholar 

  • Sherman SS, Hollis BW & Tobin JD (1990): Vitamin D status and related parameters in a healthy population: the effects of age, sex and season. J. Clin. Endocrinol. Metab. 71, 405–413.

    Article  CAS  Google Scholar 

  • Szulc P, Garnero P, Munoz F, Marchand F & Delmas PD (2001): Cross-sectional evaluation of bone metabolism in men. J. Bone Miner. Res. 16, 1642–1650.

    Article  CAS  Google Scholar 

  • Taylor GA, Peacock M, Pelc B, Brown W & Holmes A (1980): Purification of plasma vitamin D metabolites for radioimmunoassay. Clin. Chim. Acta. 108, 239–246.

    Article  CAS  Google Scholar 

  • Wilkinson R (1976): Absorption of calcium, phosphorus and magnesium. In Calcium, Phosphate and Magnesium Metabolism. BEC Nordin (ed). Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Wishart JM, Need AG, Horowitz M, Morris HA & Nordin BEC (1995): Effect of age on bone density and bone turnover in men. Clin. Endocrinol. 42, 141–146.

    Article  CAS  Google Scholar 

  • Wolf RL, Zmuda M, Charron M, Heaney RP & Cauley JA (1999): Calcium absorption efficiency in older men: relationships to age and bone loss. J. Bone Miner. Res. 14, 5404.

    Google Scholar 

  • Yoshimura N, Hashimoto T, Sakata S, Kasamatsu T & Cooper C (1999): Biochemical markers of bone turnover and bone loss at the lumbar spine and femoral neck: the Taiji study. Calcif. Tissue Int. 65, 198–202.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Guarantor: F. Scopacasa

Contributors: FS is the writer. Data assembly JMW, HAM and AGN.

Corresponding author

Correspondence to F Scopacasa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scopacasa, F., Wishart, J., Horowitz, M. et al. Relation between calcium absorption and serum calcitriol in normal men: evidence for age-related intestinal resistance to calcitriol. Eur J Clin Nutr 58, 264–269 (2004). https://doi.org/10.1038/sj.ejcn.1601777

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1601777

Keywords

This article is cited by

Search

Quick links