Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A PARP-1/JNK1 cascade participates in the synergistic apoptotic effect of TNFα and all-trans retinoic acid in APL cells

Abstract

When administrated by isolated limb perfusion, tumor necrosis factor α (TNFα) is an efficient antitumor agent that improves drug penetration and destroys angiogenic vessels. Moreover, the pronounced potentiation of TNFα-induced apoptosis by NF-κB inhibitors suggest that these compounds could enhance TNFα antitumor efficacy through direct induction of tumor cell apoptosis. Therefore, attempts at amplifying signaling pathways that mediate TNFα antitumor effects could help to design combination therapies improving its efficiency. We report that nanomolar concentrations of all-trans retinoic acid (ATRA) amplify TNFα-induced apoptosis in APL cells expressing a specific repressor of NF-κB activation. This effect is abolished by the pan-caspase inhibitor, Z-VAD-fmk and by caspase-8 and -9 inhibitors. Cell death is accompanied by a drop of mitochondrial potential and by poly (ADP-ribose) polymerase (PARP) activation. Using specific PARP-1 inhibitors and siRNAs, we show that PARP-1 is essential for the synergistic apoptotic effect and c-Jun N-terminal kinase 1 (JNK1) activation triggered by the ATRA/TNFα combination. JNK1 siRNAs reduce ATRA/TNFα-induced apoptosis, mitochondrial release of cytochrome c and caspase-9 activation. Altogether, these results identify a novel mechanism of PARP-1-induced apoptosis, in which JNK1 provides a link between PARP-1 activation and mitochondrial pathway of caspase-9 activation. This study also suggests that inclusion of nanomolar doses of ATRA could be clinically beneficial in amplifying TNFα-induced antitumor signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abadie A, Besançon F, Wietzerbin J . (2004). Type I interferon and TNFalpha cooperate with type II interferon for TRAIL induction and triggering of apoptosis in SK-N-MC EWING tumor cells. Oncogene 23: 4911–4920.

    Article  CAS  Google Scholar 

  • Adams JM, Corry S . (2007). The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26: 1324–1337.

    Article  CAS  Google Scholar 

  • Adrain C, Creagh EM, Martin SJ . (2001). Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J 20: 6627–6636.

    Article  CAS  Google Scholar 

  • Amran D, Sanchez Y, Fernandez C, Ramos AM, de Blas E, Bréard J et al. (2007). Arsenic trioxide sensitizes promonocytic leukemia cells to TNFα-induced apoptosis via p38-MAPK-regulated activation of both receptor-mediated and mitochondrial pathways. Biochem Biophys Acta 1173: 1653–1663.

    Article  Google Scholar 

  • Boulares AH, Zoltoski AJ, Yakovlev A, Xu M, Smulson ME . (2001). Roles of DNA fragmentation factor and poly(ADP-ribose) polymerase in an amplification phase of tumor necrosis factor-induced apoptosis. J Biol Chem 276: 38185–38192.

    CAS  Google Scholar 

  • Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B . (1975). An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72: 3666–3670.

    Article  CAS  Google Scholar 

  • De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, et al. (2001). Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414: 308–313.

    Article  CAS  Google Scholar 

  • Dutta J, Fan Y, Gupta N, Fan G, Gelinas C . (2006). Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene 25: 6800–6816.

    Article  CAS  Google Scholar 

  • Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G . (2006). Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13: 1423–1433.

    Article  CAS  Google Scholar 

  • Javelaud D, Besançon F . (2001). NF-kappa B activation results in rapid inactivation of JNK in TNF alpha-treated Ewing sarcoma cells: a mechanism for the anti-apoptotic effect of NF-kappa B. Oncogene 20: 4365–4372.

    Article  CAS  Google Scholar 

  • Javelaud D, Wietzerbin J, Delattre O, Besançon F . (2000). Induction of p21Waf1/Cip1 by TNFalpha requires NF-kappaB activity and antagonizes apoptosis in Ewing tumor cells. Oncogene 19: 61–68.

    Article  CAS  Google Scholar 

  • Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M . (2005). Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120: 649–661.

    Article  CAS  Google Scholar 

  • Kukekov NV, Xu Z, Greene LA . (2006). Direct interaction of the molecular scaffolds POSH and JIP is required for apoptotic activation of JNKs. J Biol Chem 281: 15517–15524.

    Article  CAS  Google Scholar 

  • Laine A, Ronai Z . (2005). Ubiquitin chains in the ladder of MAPK signaling. Sci STKE 281: re5.

    Google Scholar 

  • Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, Berger R . (1991). NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 77: 1080–1086.

    CAS  Google Scholar 

  • Lejeune FJ, Rüegg C . (2006). Recombinant human tumor necrosis factor: an efficient agent for cancer treatment. Bull Cancer 93: 90–100.

    Google Scholar 

  • Locksley RM, Killeen N, Lenardo MJ . (2001). The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104: 487–501.

    Article  CAS  Google Scholar 

  • Manna SK, Aggarwal BB . (2000). All-trans-retinoic acid upregulates TNF receptors and potentiates TNF-induced activation of nuclear factors-kappaB, activated protein-1 and apoptosis in human lung cancer cells. Oncogene 19: 2110–2119.

    Article  CAS  Google Scholar 

  • Mathieu J, Besançon F . (2006). Clinically tolerable concentrations of arsenic trioxide induce p53-independent cell death and repress NF-kappa B activation in Ewing sarcoma cell. Int J Cancer 119: 1723–1727.

    Article  CAS  Google Scholar 

  • Mathieu J, Giraudier S, Lanotte M, Besançon F . (2005). Retinoid-induced activation of NF-kappaB in APL cells is not essential for granulocytic differentiation, but prolongs the life span of mature cells. Oncogene 24: 7145–7155.

    Article  CAS  Google Scholar 

  • Micheau O, Tschopp J . (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114: 181–190.

    Article  CAS  Google Scholar 

  • Nakamura J, Asakura S, Hester SD, de Murcia G, Caldecott KW, Swenberg JA . (2003). Quantitation of intracellular NAD(P)H can monitor an imbalance of DNA single strand break repair in base excision repair deficient cells in real time. Nucleic Acids Res 31: 1–7.

    Article  Google Scholar 

  • Nguewa PA, Fuertes MA, Alonso C, Perez JM . (2003). Pharmacological modulation of Poly(ADP-ribose) polymerase-mediated cell death: exploitation in cancer chemotherapy. Mol Pharmacol 64: 1007–1014.

    Article  CAS  Google Scholar 

  • Ruegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, Lejeune FJ . (1998). Evidence for the involvement of endothelial cell integrin alphaVbeta3 in the disruption of the tumor vasculature induced by TNF and IFN-gamma. Nat Med 4: 408–414.

    Article  CAS  Google Scholar 

  • Schreiber V, Dantzer F, Ame JC, de Murcia G . (2006). Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7: 517–528.

    Article  CAS  Google Scholar 

  • Suk K, Chang I, Kim YH, Kim S, Kim JY, Kim H et al. (2001). Interferon gamma (IFNgamma) and tumor necrosis factor alpha synergism in ME-180 cervical cancer cell apoptosis and necrosis. IFNgamma inhibits cytoprotective NF-kappa B through STAT1/IRF-1 pathways. J Biol Chem 276: 13153–13159.

    Article  CAS  Google Scholar 

  • Tang G, Minemoto Y, Dibling B, Purcell NH, Li Z, Karin M et al. (2001). Inhibition of JNK activation through NF-kappaB target genes. Nature 414: 313–317.

    Article  CAS  Google Scholar 

  • Tobler A, Munker R, Heitjan D, Koeffler HP . (1987). In vitro interaction of recombinant tumor necrosis factor alpha and all-trans-retinoic acid with normal and leukemic hematopoietic cells. Blood 70: 1940–1946.

    CAS  Google Scholar 

  • Traenckner EB, Pahl HL, Henkel T, Schmidt KN, Wilk S, Baeuerle PA . (1995). Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. EMBO J 14: 2876–2883.

    Article  CAS  Google Scholar 

  • Van Horssen R, Ten Hagen TL, Eggermont AM . (2006). TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 11: 397–408.

    Article  CAS  Google Scholar 

  • Van Molle W, Wielockx B, Mahieu T, Takada M, Taniguchi T, Sekikawa K et al. (2002). HSP70 protects against TNF-induced lethal inflammatory shock. Immunity 16: 685–695.

    Article  CAS  Google Scholar 

  • Weston CR, Davis RJ . (2007). The JNK signal transduction pathway. Curr Opin Cell Biol 19: 142–149.

    Article  CAS  Google Scholar 

  • Whitmarsh AJ, Cavanagh J, Tournier C, Yasuda J, Davis RJ . (1998). A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 281: 1671–1674.

    Article  CAS  Google Scholar 

  • Witcher M, Ross DT, Rousseau C, Deluca L, Miller Jr WH . (2003). Synergy between all-trans retinoic acid and tumor necrosis factor pathways in acute leukemia cells. Blood 102: 237–245.

    Article  CAS  Google Scholar 

  • Xu Y, Huang S, Liu ZG, Han J . (2006). Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. J Biol Chem 281: 8788–8795.

    Article  CAS  Google Scholar 

  • Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ et al. (2002). Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297: 259–263.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from INSERM. JM is funded by the Association pour la Recherche sur le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Besançon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathieu, J., Flexor, M., Lanotte, M. et al. A PARP-1/JNK1 cascade participates in the synergistic apoptotic effect of TNFα and all-trans retinoic acid in APL cells. Oncogene 27, 3361–3370 (2008). https://doi.org/10.1038/sj.onc.1210997

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210997

Keywords

This article is cited by

Search

Quick links