Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Thyroid hormone receptor-β (TRβ1) impairs cell proliferation by the transcriptional inhibition of cyclins D1, E and A2

Abstract

Thyroid hormone receptor-β1 (TRβ1) belongs to the ligand-inducible transcription factor superfamily. We have previously described that stable TRβ1 expression impairs fibroblast proliferation diminishing levels and activity of the main regulators of the G1/S transition. To unmask the underlying molecular mechanism of this action, we have investigated the expression of cyclin D1, E and A2 upon serum stimulation in TRβ1 expressing cells, finding a strong downregulation of their mRNAs, concomitant with low protein levels. The inhibition of the transcriptional activation in response to serum of these cyclins is differently exerted. For cyclin D1, we demonstrate that TRβ1 represses its promoter as a consequence of the downregulation of c-jun levels, diminished AP-1 activation and loss of c-jun recruitment to its binding sites on cyclin D1 promoter. For cyclin E and A2, it is the impairment of the cyclinD/Rb/E2F pathway by TRβ1 that prevents the activation of these two E2F target genes. Indeed, recruitment of E2F-1 to cyclin A2 promoter could not be detected. In summary, we propose that apo-TRβ1 exerts its antiproliferative action through a mechanism that could constitute a model by which other nuclear receptors may control cell division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Barrera-Hernandez G, Zhan Q, Wong R, Cheng SY . (1998). Thyroid hormone receptor is a negative regulator in p53-mediated signaling pathways. DNA Cell Biol 17: 743–750.

    Article  CAS  Google Scholar 

  • Benkoussa M, Brand C, Delmotte MH, Formstecher P, Lefebvre P . (2002). Retinoic acid receptors inhibit AP1 activation by regulating extracellular signal-regulated kinase and CBP recruitment to an AP1-responsive promoter. Mol Cell Biol 22: 4522–4534.

    Article  CAS  Google Scholar 

  • Bhat MK, Yu C, Yap N, Zhan Q, Hayashi Y, Seth P et al. (1997). Tumor suppressor p53 is a negative regulator in thyroid hormone receptor signaling pathways. J Biol Chem 272: 28989–28993.

    Article  CAS  Google Scholar 

  • Botz J, Zerfass-Thome K, Spitkovsky D, Delius H, Vogt B, Eilers M et al. (1996). Cell cycle regulation of the murine cyclin E gene depends on an E2F binding site in the promoter. Mol Cell Biol 16: 3401–3409.

    Article  CAS  Google Scholar 

  • Campanero MR, Armstrong MI, Flemington EK . (2000). CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci USA 97: 6481–6486.

    Article  CAS  Google Scholar 

  • Chan IH, Privalsky ML . (2006). Thyroid hormone receptors mutated in liver cancer function as distorted antimorphs. Oncogene 25: 3576–3588.

    Article  CAS  Google Scholar 

  • Chassande O, Fraichard A, Gauthier K, Flamant F, Legrand C, Savatier P et al. (1997). Identification of transcripts initiated from an internal promoter in the c-erbA alpha locus that encode inhibitors of retinoic acid receptor-alpha and triiodothyronine receptor activities. Mol Endocrinol 11: 1278–1290.

    CAS  PubMed  Google Scholar 

  • Deogracias R, Espliguero G, Iglesias T, Rodriguez-Pena A . (2004). Expression of the neurotrophin receptor trkB is regulated by the cAMP/CREB pathway in neurons. Mol Cell Neurosci 26: 470–480.

    Article  CAS  Google Scholar 

  • Furumoto H, Ying H, Chandramouli GV, Zhao L, Walker RL, Meltzer PS et al. (2005). An unliganded thyroid hormone beta receptor activates the cyclin D1/cyclin-dependent kinase/retinoblastoma/E2F pathway and induces pituitary tumorigenesis. Mol Cell Biol 25: 124–135.

    Article  CAS  Google Scholar 

  • Garcia-Silva S, Aranda A . (2004). The thyroid hormone receptor is a suppressor of ras-mediated transcription, proliferation, and transformation. Mol Cell Biol 24: 7514–7523.

    Article  CAS  Google Scholar 

  • Glass CK, Rosenfeld MG . (2000). The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14: 121–141.

    CAS  PubMed  Google Scholar 

  • Gonzalez-Sancho JM, Garcia V, Bonilla F, Munoz A . (2003). Thyroid hormone receptors/THR genes in human cancer. Cancer Lett 192: 121–132.

    Article  CAS  Google Scholar 

  • Gottlicher M, Heck S, Herrlich P . (1998). Transcriptional cross-talk, the second mode of steroid hormone receptor action. J Mol Med 76: 480–489.

    Article  CAS  Google Scholar 

  • Hashimoto K, Curty FH, Borges PP, Lee CE, Abel ED, Elmquist JK et al. (2001). An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc Natl Acad Sci USA 98: 3998–4003.

    Article  CAS  Google Scholar 

  • Koenig RJ, Lazar MA, Hodin RA, Brent GA, Larsen PR, Chin WW et al. (1989). Inhibition of thyroid hormone action by a non-hormone binding c-erbA protein generated by alternative mRNA splicing. Nature 337: 659–661.

    Article  CAS  Google Scholar 

  • Krude T, Jackman M, Pines J, Laskey RA . (1997). Cyclin/Cdk-dependent initiation of DNA replication in a human cell-free system. Cell 88: 109–119.

    Article  CAS  Google Scholar 

  • Le Cam L, Polanowska J, Fabbrizio E, Olivier M, Philips A, Ng Eaton E et al. (1999). Timing of cyclin E gene expression depends on the regulated association of a bipartite repressor element with a novel E2F complex. EMBO J 18: 1878–1890.

    Article  CAS  Google Scholar 

  • Lin HM, Zhao L, Cheng SY . (2002). Cyclin D1 Is a ligand-independent co-repressor for thyroid hormone receptors. J Biol Chem 277: 28733–28741.

    Article  CAS  Google Scholar 

  • Nygard M, Wahlstrom GM, Gustafsson MV, Tokumoto YM, Bondesson M . (2003). Hormone-dependent repression of the E2F-1 gene by thyroid hormone receptors. Mol Endocrinol 17: 79–92.

    Article  CAS  Google Scholar 

  • O'Shea PJ, Williams GR . (2002). Insight into the physiological actions of thyroid hormone receptors from genetically modified mice. J Endocrinol 175: 553–570.

    Article  CAS  Google Scholar 

  • Pfaffl MW . (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: 45.

    Article  Google Scholar 

  • Pfahl M . (1993). Nuclear receptor/AP-1 interaction. Endocr Rev 14: 651–658.

    CAS  PubMed  Google Scholar 

  • Porlan E, Vega S, Iglesias T, Rodriguez-Pena A . (2004). Unliganded thyroid hormone receptor beta1 inhibits proliferation of murine fibroblasts by delaying the onset of the G1 cell-cycle signals. Oncogene 23: 8756–8765.

    Article  CAS  Google Scholar 

  • Rayman JB, Takahashi Y, Indjeian VB, Dannenberg JH, Catchpole S, Watson RJ et al. (2002). E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev 16: 933–947.

    Article  CAS  Google Scholar 

  • Sanz-Gonzalez SM, Castro C, Perez P, Andres V . (2004). Role of E2F and ERK1/2 in STI571-mediated smooth muscle cell growth arrest and cyclin A transcriptional repression. Biochem Biophys Res Commun 317: 972–979.

    Article  CAS  Google Scholar 

  • Shaulian E, Karin M . (2001). AP-1 in cell proliferation and survival. Oncogene 20: 2390–2400.

    Article  CAS  Google Scholar 

  • Sherr CJ . (1995). Mammalian G1 cyclins and cell cycle progression. Proc Assoc Am Physicians 107: 181–186.

    CAS  PubMed  Google Scholar 

  • Wisdom R . (1999). AP-1: one switch for many signals. Exp Cell Res 253: 180–185.

    Article  CAS  Google Scholar 

  • Yamaguchi K, Lantowski A, Dannenberg AJ, Subbaramaiah K . (2005). Histone deacetylase inhibitors suppress the induction of c-Jun and its target genes including COX-2. J Biol Chem 280: 32569–32577.

    Article  CAS  Google Scholar 

  • Yap N, Yu CL, Cheng SY . (1996). Modulation of the transcriptional activity of thyroid hormone receptors by the tumor suppressor p53. Proc Natl Acad Sci USA 93: 4273–4277.

    Article  CAS  Google Scholar 

  • Zhang J, Lazar MA . (2000). The mechanism of action of thyroid hormones. Annu Rev Physiol 62: 439–466.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr MR Campanero and Dr M Diaz-Guerra for critically reading the manuscript and Dr T Iglesias for helpful discussions and valuable comments. We are also indebted to Dr MR Campanero, Dr R Pestell and Dr V Andrés for E2F and cyclin D1 and A2 reporter plasmids and Dr P Maruvada for TRβ mutants. This work was supported by grants to AR-P from Dirección General de Investigación Científica y Técnica (MEC-BFU2004-01498). EP is supported by a grant-associated contract, and OGV is recipient of a pre-doctoral fellowship from Ministerio de Educación y Ciencia associated to the MEC grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Rodríguez-Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porlan, E., Vidaurre, O. & Rodríguez-Peña, A. Thyroid hormone receptor-β (TRβ1) impairs cell proliferation by the transcriptional inhibition of cyclins D1, E and A2. Oncogene 27, 2795–2800 (2008). https://doi.org/10.1038/sj.onc.1210936

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210936

Keywords

This article is cited by

Search

Quick links