Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

DNA double-strand break repair and development

Abstract

Normal development of an organism requires the ability to respond to DNA damage. A particularly deleterious lesion is a DNA double-strand break (DSB). The cellular response to DNA DSBs occurs via an integrated sensing and signaling network that maintains genomic stability. The outcomes of defective DNA DSB repair are related to the developmental stage of an organism, and often show striking tissue specificity. Many human diseases are associated with deficiencies in DNA DSB repair and can be characterized by neuropathology, immune deficiency, growth retardation or predisposition to cancer. This review will focus on the requirements of the DNA DSB response that function to maintain homeostasis during mammalian development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Ahnesorg P, Smith P, Jackson SP . (2006). XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124: 301–313.

    CAS  PubMed Central  Google Scholar 

  • Audebert M, Salles B, Calsou P . (2004). Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279: 55117–55126.

    CAS  Google Scholar 

  • Bakkenist CJ, Kastan MB . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    Article  CAS  Google Scholar 

  • Bakkenist CJ, Kastan MB . (2004). Initiating cellular stress responses. Cell 118: 9–17.

    CAS  Google Scholar 

  • Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F et al. (1996). Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86: 159–171.

    CAS  PubMed Central  Google Scholar 

  • Barnes DE, Stamp G, Rosewell I, Denzel A, Lindahl T . (1998). Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr Biol 8: 1395–1398.

    CAS  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    CAS  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637.

    CAS  PubMed Central  Google Scholar 

  • Bassing CH, Alt FW . (2004). The cellular response to general and programmed DNA double strand breaks. DNA Repair (Amst) 3: 781–796.

    CAS  Google Scholar 

  • Bekker-Jensen S, Lukas C, Melander F, Bartek J, Lukas J . (2005). Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1. J Cell Biol 170: 201–211.

    CAS  PubMed Central  Google Scholar 

  • Berkovich E, Monnat Jr RJ, Kastan MB . (2007). Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9: 683–690.

    CAS  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B et al. (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436: 660–665.

    Article  CAS  Google Scholar 

  • Bredemeyer AL, Sharma GG, Huang CY, Helmink BA, Walker LM, Khor KC et al. (2006). ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442: 466–470.

    CAS  Google Scholar 

  • Brown EJ, Baltimore D . (2000). ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14: 397–402.

    CAS  PubMed Central  Google Scholar 

  • Buck D, Malivert L, de Chasseval R, Barraud A, Fondaneche MC, Sanal O et al. (2006a). Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124: 287–299.

    CAS  PubMed Central  Google Scholar 

  • Buck D, Moshous D, de Chasseval R, Ma Y, le Deist F, Cavazzana-Calvo M et al. (2006b). Severe combined immunodeficiency and microcephaly in siblings with hypomorphic mutations in DNA ligase IV. Eur J Immunol 36: 224–235.

    CAS  Google Scholar 

  • Burma S, Chen DJ . (2004). Role of DNA-PK in the cellular response to DNA double-strand breaks. DNA Repair (Amst) 3: 909–918.

    CAS  Google Scholar 

  • Callen E, Jankovic M, Difilippantonio S, Daniel JA, Chen HT, Celeste A et al. (2007). ATM prevents the persistence and propagation of chromosome breaks in lymphocytes. Cell 130: 63–75.

    CAS  Google Scholar 

  • Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates III JR et al. (1998). The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93: 477–486.

    CAS  Google Scholar 

  • Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD . (2003). The Mre11 complex is required for ATM activation and the G(2)/M checkpoint. EMBO J 22: 6610–6620.

    CAS  PubMed Central  Google Scholar 

  • Celeste A, Difilippantonio S, Difilippantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedelnikova OA et al. (2003). H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114: 371–383.

    Article  CAS  Google Scholar 

  • Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA et al. (2002). Genomic instability in mice lacking histone H2AX. Science 296: 922–927.

    CAS  PubMed Central  Google Scholar 

  • Cheung AM, Elia A, Tsao MS, Done S, Wagner KU, Hennighausen L et al. (2004). Brca2 deficiency does not impair mammary epithelium development but promotes mammary adenocarcinoma formation in p53(+/−) mutant mice. Cancer Res 64: 1959–1965.

    CAS  Google Scholar 

  • Chong MJ, Murray MR, Gosink EC, Russell HR, Srinivasan A, Kapsetaki M et al. (2000). Atm and Bax cooperate in ionizing radiation-induced apoptosis in the central nervous system. Proc Natl Acad Sci USA 97: 889–894.

    CAS  Google Scholar 

  • Chun HH, Gatti RA . (2004). Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst) 3: 1187–1196.

    CAS  Google Scholar 

  • Cleaver JE . (2005). Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer 5: 564–573.

    CAS  Google Scholar 

  • Connor F, Bertwistle D, Mee PJ, Ross GM, Swift S, Grigorieva E et al. (1997). Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat Genet 17: 423–430.

    CAS  Google Scholar 

  • Couedel C, Mills KD, Barchi M, Shen L, Olshen A, Johnson RD et al. (2004). Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev 18: 1293–1304.

    CAS  PubMed Central  Google Scholar 

  • Critchlow SE, Bowater RP, Jackson SP . (1997). Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol 7: 588–598.

    CAS  Google Scholar 

  • D'Andrea AD . (2003). The Fanconi road to cancer. Genes Dev 17: 1933–1936.

    CAS  Google Scholar 

  • D'Andrea AD, Grompe M . (2003). The Fanconi anaemia/BRCA pathway. Nat Rev Cancer 3: 23–34.

    CAS  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444: 638–642.

    CAS  PubMed Central  Google Scholar 

  • DiBiase SJ, Zeng Z-C, Chen R, Hyslop T, Curran Jr WJ, Iliakis G . (2000). DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Cancer Res 60: 1245–1253.

    CAS  Google Scholar 

  • Difilippantonio S, Celeste A, Fernandez-Capetillo O, Chen HT, Reina San Martin B, Van Laethem F et al. (2005). Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 7: 675–685.

    CAS  Google Scholar 

  • Difilippantonio S, Celeste A, Kruhlak MJ, Lee Y, Difilippantonio MJ, Feigenbaum L et al. (2007). Distinct domains in Nbs1 regulate irradiation-induced checkpoints and apoptosis. J Exp Med 204: 1003–1011.

    CAS  PubMed Central  Google Scholar 

  • Digweed M, Sperling K . (2004). Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair (Amst) 3: 1207–1217.

    CAS  Google Scholar 

  • Dornan D, Shimizu H, Mah A, Dudhela T, Eby M, O'Rourke K et al. (2006). ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage. Science 313: 1122–1126.

    CAS  Google Scholar 

  • Elson A, Wang Y, Daugherty CJ, Morton CC, Zhou F, Campos-Torres J et al. (1996). Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc Natl Acad Sci USA 93: 13084–13089.

    CAS  Google Scholar 

  • Falck J, Coates J, Jackson SP . (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434: 605–611.

    CAS  PubMed Central  Google Scholar 

  • Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A . (2004). H2AX: the histone guardian of the genome. DNA Repair (Amst) 3: 959–967.

    CAS  Google Scholar 

  • Frank KM, Sekiguchi JM, Seidl KJ, Swat W, Rathbun GA, Cheng HL et al. (1998). Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 396: 173–177.

    CAS  Google Scholar 

  • Frank KM, Sharpless NE, Gao Y, Sekiguchi JM, Ferguson DO, Zhu C et al. (2000). DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol Cell 5: 993–1002.

    CAS  Google Scholar 

  • Frappart PO, Lee Y, Lamont J, McKinnon PJ . (2007). BRCA2 is required for neurogenesis and suppression of medulloblastoma. EMBO J 26: 2732–2742.

    CAS  PubMed Central  Google Scholar 

  • Frappart PO, McKinnon PJ . (2006). Ataxia-telangiectasia and related diseases. Neuromolecular Med 8: 495–512.

    CAS  Google Scholar 

  • Frappart PO, Tong WM, Demuth I, Radovanovic I, Herceg Z, Aguzzi A et al. (2005). An essential function for NBS1 in the prevention of ataxia and cerebellar defects. Nat Med 11: 538–544.

    CAS  Google Scholar 

  • Friedberg EC, Meira LB . (2006). Database of mouse strains carrying targeted mutations in genes affecting biological responses to DNA damage version 7. DNA Repair (Amst) 5: 189–209.

    CAS  Google Scholar 

  • Gao Y, Chaudhuri J, Zhu C, Davidson L, Weaver DT, Alt FW . (1998a). A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity 9: 367–376.

    CAS  Google Scholar 

  • Gao Y, Ferguson DO, Xie W, Manis JP, Sekiguchi J, Frank KM et al. (2000). Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404: 897–900.

    CAS  PubMed Central  Google Scholar 

  • Gao Y, Sun Y, Frank KM, Dikkes P, Fujiwara Y, Seidl KJ et al. (1998b). A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95: 891–902.

    CAS  PubMed Central  Google Scholar 

  • Girard PM, Kysela B, Harer CJ, Doherty AJ, Jeggo PA . (2004). Analysis of DNA ligase IV mutations found in LIG4 syndrome patients: the impact of two linked polymorphisms. Hum Mol Genet 13: 2369–2376.

    CAS  Google Scholar 

  • Goldberg M, Stucki M, Falck J, D'Amours D, Rahman D, Pappin D et al. (2003). MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421: 952–956.

    CAS  Google Scholar 

  • Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M et al. (1997). Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells [see comments]. Nature 388: 492–495.

    CAS  Google Scholar 

  • Grawunder U, Zimmer D, Kulesza P, Lieber MR . (1998a). Requirement for an interaction of XRCC4 with DNA ligase IV for wild-type V(D)J recombination and DNA double-strand break repair in vivo. J Biol Chem 273: 24708–24714.

    CAS  Google Scholar 

  • Grawunder U, Zimmer D, Leiber MR . (1998b). DNA ligase IV binds to XRCC4 via a motif located between rather than within its BRCT domains. Curr Biol 8: 873–876.

    CAS  Google Scholar 

  • Gu Y, Seidl KJ, Rathbun GA, Zhu C, Manis JP, van der Stoep N et al. (1997). Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 7: 653–665.

    CAS  Google Scholar 

  • Gu Y, Sekiguchi J, Gao Y, Dikkes P, Frank K, Ferguson D et al. (2000). Defective embryonic neurogenesis in Ku-deficient but not DNA-dependent protein kinase catalytic subunit-deficient mice. Proc Natl Acad Sci USA 97: 2668–2673.

    CAS  Google Scholar 

  • Guidos CJ, Williams CJ, Grandal I, Knowles G, Huang MT, Danska JS . (1996). V(D)J recombination activates a p53-dependent DNA damage checkpoint in scid lymphocyte precursors. Genes Dev 10: 2038–2054.

    CAS  Google Scholar 

  • Helleday T, Lo J, van Gent DC, Engelward BP . (2007). DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst) 6: 923–935.

    CAS  Google Scholar 

  • Herzog KH, Chong MJ, Kapsetaki M, Morgan JI, McKinnon PJ . (1998). Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 280: 1089–1091.

    CAS  Google Scholar 

  • Heyer WD, Li X, Rolfsmeier M, Zhang XP . (2006). Rad54: the Swiss Army knife of homologous recombination? Nucleic Acids Res 34: 4115–4125.

    CAS  PubMed Central  Google Scholar 

  • Hoeijmakers JH . (2001). Genome maintenance mechanisms for preventing cancer. Nature 411: 366–374.

    CAS  Google Scholar 

  • Holcomb VB, Vogel H, Marple T, Kornegay RW, Hasty P . (2006). Ku80 and p53 suppress medulloblastoma that arise independent of Rag-1-induced DSBs. Oncogene 25: 7159–7165.

    CAS  Google Scholar 

  • Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De Die-Smulders C et al. (2002). Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297: 606–609.

    CAS  PubMed Central  Google Scholar 

  • Hughes-Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin SF et al. (2003). EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 115: 523–535.

    CAS  PubMed Central  Google Scholar 

  • Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J et al. (2006). ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8: 37–45.

    CAS  Google Scholar 

  • Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J et al. (2003). Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4: 321–328.

    CAS  PubMed Central  Google Scholar 

  • Jeggo P, O'Neill P . (2002). The greek goddess, Artemis, reveals the secrets of her cleavage. DNA Repair (Amst) 1: 771–777.

    CAS  Google Scholar 

  • Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A . (2001). Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29: 418–425.

    CAS  Google Scholar 

  • Kang J, Bronson RT, Xu Y . (2002). Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. EMBO J 21: 1447–1455.

    CAS  PubMed Central  Google Scholar 

  • Kastan MB, Lim DS . (2000). The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1: 179–186.

    CAS  Google Scholar 

  • Kennedy RD, D'Andrea AD . (2005). The Fanconi anemia/BRCA pathway: new faces in the crowd. Genes Dev 19: 2925–2940.

    CAS  Google Scholar 

  • Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D . (1999). Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci USA 96: 14973–14977.

    CAS  Google Scholar 

  • Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB . (2004). Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev 18: 1423–1438.

    CAS  PubMed Central  Google Scholar 

  • Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF . (2006). Involvement of novel autophosphorylation sites in ATM activation. EMBO J 25: 3504–3514.

    CAS  PubMed Central  Google Scholar 

  • Lee Y, Barnes DE, Lindahl T, McKinnon PJ . (2000). Defective neurogenesis resulting from DNA ligase IV deficiency requires Atm. Genes Dev 14: 2576–2580.

    CAS  PubMed Central  Google Scholar 

  • Lee Y, Chong MJ, McKinnon PJ . (2001). Ataxia telangiectasia mutated-dependent apoptosis after genotoxic stress in the developing nervous system is determined by cellular differentiation status. J Neurosci 21: 6687–6693.

    CAS  Google Scholar 

  • Lee Y, McKinnon PJ . (2002). DNA ligase IV suppresses medulloblastoma formation. Cancer Res 62: 6395–6399.

    CAS  Google Scholar 

  • Lee Y, McKinnon PJ . (2007). Responding to DNA double strand breaks in the nervous system. Neuroscience 145: 1365–1374.

    CAS  Google Scholar 

  • Lees-Miller SP, Meek K . (2003). Repair of DNA double strand breaks by non-homologous end joining. Biochimie 85: 1161–1173.

    CAS  Google Scholar 

  • Lieber MR, Ma Y, Pannicke U, Schwarz K . (2003). Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4: 712–720.

    CAS  Google Scholar 

  • Lou Z, Minter-Dykhouse K, Franco S, Gostissa M, Rivera MA, Celeste A et al. (2006). MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 21: 187–200.

    CAS  Google Scholar 

  • Lou Z, Minter-Dykhouse K, Wu X, Chen J . (2003). MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 421: 957–961.

    CAS  Google Scholar 

  • Ludwig T, Fisher P, Murty V, Efstratiadis A . (2001). Development of mammary adenocarcinomas by tissue-specific knockout of Brca2 in mice. Oncogene 20: 3937–3948.

    CAS  Google Scholar 

  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald III ER, Hurov KE, Luo J et al. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316: 1160–1166.

    CAS  Google Scholar 

  • Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O et al. (2001). ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 15: 1067–1077.

    CAS  PubMed Central  Google Scholar 

  • McKinnon PJ . (1987). Ataxia-telangiectasia: an inherited disorder of ionizing-radiation sensitivity in man. Progress in the elucidation of the underlying biochemical defect. Hum Genet 75: 197–208.

    CAS  Google Scholar 

  • McKinnon PJ . (2004). ATM and ataxia telangiectasia. EMBO Rep 5: 772–776.

    CAS  PubMed Central  Google Scholar 

  • McKinnon PJ, Caldecott KW . (2007). DNA strand break repair and human genetic disease. Annu Rev Genomics Hum Genet 8: 37–55.

    CAS  Google Scholar 

  • Mills KD, Ferguson DO, Essers J, Eckersdorff M, Kanaar R, Alt FW . (2004). Rad54 and DNA ligase IV cooperate to maintain mammalian chromatid stability. Genes Dev 18: 1283–1292.

    CAS  PubMed Central  Google Scholar 

  • Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F et al. (2001). Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105: 177–186.

    CAS  Google Scholar 

  • Nijnik A, Woodbine L, Marchetti C, Dawson S, Lambe T, Liu C et al. (2007). DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447: 686–690.

    CAS  PubMed Central  Google Scholar 

  • Nussenzweig A, Chen C, da Costa Soares V, Sanchez M, Sokol K, Nussenzweig MC et al. (1996). Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382: 551–555.

    CAS  Google Scholar 

  • O'Driscoll M, Cerosaletti KM, Girard PM, Dai Y, Stumm M, Kysela B et al. (2001). DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell 8: 1175–1185.

    CAS  Google Scholar 

  • O'Driscoll M, Gennery AR, Seidel J, Concannon P, Jeggo PA . (2004). An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. DNA Repair (Amst) 3: 1227–1235.

    CAS  Google Scholar 

  • Offit K, Levran O, Mullaney B, Mah K, Nafa K, Batish SD et al. (2003). Shared genetic susceptibility to breast cancer, brain tumors, and Fanconi anemia. J Natl Cancer Inst 95: 1548–1551.

    CAS  Google Scholar 

  • Orii KE, Lee Y, Kondo N, McKinnon PJ . (2006). Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development. Proc Natl Acad Sci USA 103: 10017–10022.

    CAS  Google Scholar 

  • Ouyang H, Nussenzweig A, Kurimasa A, Soares VC, Li X, Cordon-Cardo C et al. (1997). Ku70 is required for DNA repair but not for T cell antigen receptor gene recombination in vivo. J Exp Med 186: 921–929.

    CAS  PubMed Central  Google Scholar 

  • Pellegrini M, Celeste A, Difilippantonio S, Guo R, Wang W, Feigenbaum L et al. (2006). Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 443: 222–225.

    CAS  PubMed Central  Google Scholar 

  • Perrault R, Wang H, Wang M, Rosidi B, Iliakis G . (2004). Backup pathways of NHEJ are suppressed by DNA-PK. J Cell Biochem 92: 781–794.

    CAS  Google Scholar 

  • Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R et al. (2007). Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 39: 162–164.

    CAS  Google Scholar 

  • Revy P, Malivert L, de Villartay JP . (2006). Cernunnos-XLF, a recently identified non-homologous end-joining factor required for the development of the immune system. Curr Opin Allergy Clin Immunol 6: 416–420.

    CAS  Google Scholar 

  • Riballo E, Critchlow SE, Teo SH, Doherty AJ, Priestley A, Broughton B et al. (1999). Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr Biol 9: 699–702.

    CAS  Google Scholar 

  • Riballo E, Doherty AJ, Dai Y, Stiff T, Oettinger MA, Jeggo PA et al. (2001). Cellular and biochemical impact of a mutation in DNA ligase IV conferring clinical radiosensitivity. J Biol Chem 276: 31124–31132.

    CAS  Google Scholar 

  • Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ et al. (2004). A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 16: 715–724.

    CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858–5868.

    CAS  PubMed Central  Google Scholar 

  • Rooney S, Alt FW, Lombard D, Whitlow S, Eckersdorff M, Fleming J et al. (2003). Defective DNA repair and increased genomic instability in Artemis-deficient murine cells. J Exp Med 197: 553–565.

    CAS  PubMed Central  Google Scholar 

  • Rooney S, Sekiguchi J, Zhu C, Cheng HL, Manis J, Whitlow S et al. (2002). Leaky scid associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol Cell 10: 1379–1390.

    CAS  Google Scholar 

  • Rosenthal N, Brown S . (2007). The mouse ascending: perspectives for human-disease models. Nat Cell Biol 9: 993–999.

    CAS  Google Scholar 

  • Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL . (2007). Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447: 725–729.

    CAS  PubMed Central  Google Scholar 

  • Rothkamm K, Kruger I, Thompson LH, Lobrich M . (2003). Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23: 5706–5715.

    CAS  PubMed Central  Google Scholar 

  • Sedelnikova OA, Pilch DR, Redon C, Bonner WM . (2003). Histone H2AX in DNA damage and repair. Cancer Biol Ther 2: 233–235.

    CAS  Google Scholar 

  • Sekiguchi J, Ferguson DO, Chen HT, Yang EM, Earle J, Frank K et al. (2001). Genetic interactions between ATM and the nonhomologous end-joining factors in genomic stability and development. Proc Natl Acad Sci USA 98: 3243–3248.

    CAS  Google Scholar 

  • Shiloh Y . (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155–168.

    CAS  Google Scholar 

  • Shiloh Y . (2006). The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 31: 402–410.

    CAS  Google Scholar 

  • Shivji MK, Venkitaraman AR . (2004). DNA recombination, chromosomal stability and carcinogenesis: insights into the role of BRCA2. DNA Repair (Amst) 3: 835–843.

    CAS  Google Scholar 

  • Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI, Jaspers NG et al. (1999). The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99: 577–587.

    CAS  PubMed Central  Google Scholar 

  • Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ . (2003). MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421: 961–966.

    CAS  Google Scholar 

  • Stiff T, Reis C, Alderton GK, Woodbine L, O'Driscoll M, Jeggo PA . (2005). Nbs1 is required for ATR-dependent phosphorylation events. EMBO J 24: 199–208.

    CAS  Google Scholar 

  • Stracker TH, Morales M, Couto SS, Hussein H, Petrini JH . (2007). The carboxy terminus of NBS1 is required for induction of apoptosis by the MRE11 complex. Nature 447: 218–221.

    CAS  PubMed Central  Google Scholar 

  • Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP . (2005). MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123: 1213–1226.

    CAS  PubMed Central  Google Scholar 

  • Stucki M, Jackson SP . (2006). gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair (Amst) 5: 534–543.

    CAS  Google Scholar 

  • Suzuki A, de la Pompa JL, Hakem R, Elia A, Yoshida R, Mo R et al. (1997). Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dev 11: 1242–1252.

    CAS  Google Scholar 

  • Taccioli GE, Amatucci AG, Beamish HJ, Gell D, Xiang XH, Torres Arzayus MI et al. (1998). Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 9: 355–366.

    CAS  Google Scholar 

  • Takai H, Naka K, Okada Y, Watanabe M, Harada N, Saito S et al. (2002). Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J 21: 5195–5205.

    CAS  PubMed Central  Google Scholar 

  • Thacker J, Zdzienicka MZ . (2003). The mammalian XRCC genes: their roles in DNA repair and genetic stability. DNA Repair (Amst) 2: 655–672.

    CAS  Google Scholar 

  • Thacker J, Zdzienicka MZ . (2004). The XRCC genes: expanding roles in DNA double-strand break repair. DNA Repair (Amst) 3: 1081–1090.

    CAS  Google Scholar 

  • Theunissen JW, Kaplan MI, Hunt PA, Williams BR, Ferguson DO, Alt FW et al. (2003). Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol Cell 12: 1511–1523.

    CAS  Google Scholar 

  • Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y . (2003). Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22: 5612–5621.

    CAS  PubMed Central  Google Scholar 

  • van Brabant AJ, Stan R, Ellis NA . (2000). DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet 1: 409–459.

    CAS  Google Scholar 

  • Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K et al. (1998). Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93: 467–476.

    CAS  Google Scholar 

  • Wang H, Rosidi B, Perrault R, Wang M, Zhang L, Windhofer F et al. (2005a). DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Res 65: 4020–4030.

    CAS  Google Scholar 

  • Wang J, Pluth JM, Cooper PK, Cowan MJ, Chen DJ, Yannone SM . (2005b). Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression. DNA Repair (Amst) 4: 556–570.

    CAS  Google Scholar 

  • Ward I, Chen J . (2004). Early events in the DNA damage response. Curr Top Dev Biol 63: 1–35.

    CAS  Google Scholar 

  • West SC . (2003). Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 4: 435–445.

    CAS  Google Scholar 

  • Williams BR, Mirzoeva OK, Morgan WF, Lin J, Dunnick W, Petrini JH . (2002). A murine model of nijmegen breakage syndrome. Curr Biol 12: 648–653.

    CAS  Google Scholar 

  • Windhofer F, Wu W, Wang M, Singh SK, Saha J, Rosidi B et al. (2007). Marked dependence on growth state of backup pathways of NHEJ. Int J Radiat Oncol Biol Phys 68: 1462–1470.

    Google Scholar 

  • Wyman C, Ristic D, Kanaar R . (2004). Homologous recombination-mediated double-strand break repair. DNA Repair (Amst) 3: 827–833.

    CAS  Google Scholar 

  • Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q et al. (2007). Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39: 159–161.

    CAS  Google Scholar 

  • Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D . (1996). Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 10: 2411–2422.

    CAS  Google Scholar 

  • Xu Y, Baltimore D . (1996). Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev 10: 2401–2410.

    CAS  Google Scholar 

  • Xu Y, Yang EM, Brugarolas J, Jacks T, Baltimore D . (1998). Involvement of p53 and p21 in cellular defects and tumorigenesis in atm−/− mice. Mol Cell Biol 18: 4385–4390.

    CAS  PubMed Central  Google Scholar 

  • Yan CT, Kaushal D, Murphy M, Zhang Y, Datta A, Chen C et al. (2006). XRCC4 suppresses medulloblastomas with recurrent translocations in p53-deficient mice. Proc Natl Acad Sci USA 103: 7378–7383.

    CAS  Google Scholar 

  • Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG . (2007). Ataxia-telangiectasia mutated (ATM)-dependent activation of ATR occurs through Phosphorylation of TopBP1 by ATM. J Biol Chem 282: 17501–17506.

    CAS  Google Scholar 

  • You Z, Chahwan C, Bailis J, Hunter T, Russell P . (2005). ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol 25: 5363–5379.

    CAS  PubMed Central  Google Scholar 

  • Zhang X, Succi J, Feng Z, Prithivirajsingh S, Story MD, Legerski RJ . (2004). Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response. Mol Cell Biol 24: 9207–9220.

    CAS  PubMed Central  Google Scholar 

  • Zhu J, Petersen S, Tessarollo L, Nussenzweig A . (2001). Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr Biol 11: 105–109.

    CAS  Google Scholar 

  • Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC et al. (2006). Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol 8: 870–876.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J McKinnon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, E., McKinnon, P. DNA double-strand break repair and development. Oncogene 26, 7799–7808 (2007). https://doi.org/10.1038/sj.onc.1210877

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210877

Keywords

This article is cited by

Search

Quick links