Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The clinical manifestation of a defective response to DNA double-strand breaks as exemplified by Nijmegen breakage syndrome

Abstract

The autosomal recessive genetic disorder Nijmegen breakage syndrome (NBS) was first described in 1981 in patients living in Nijmegen, Holland. NBS patients display a characteristic facial appearance, microcephaly and a range of symptoms including immunodeficiency, increased cancer risk and growth retardation. In addition, NBS patient cells were found to have elevated levels of chromosomal damage and to be sensitive to ionizing irradiation (IR). This radiosensitivity had fatal consequences in some undiagnosed patients. The most dangerous DNA lesion caused by IR is considered to be the double-strand break (DSB) and indeed, NBS patient cells are sensitive to all mutagens that produce DSBs directly or indirectly. We discuss here our current understanding of how a deficiency in DSB repair manifests as the particular symptom complex of NBS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Buslov KG, Iyevleva AG, Chekmariova EV, Suspitsin EN, Togo AV, Kuligina E et al. (2005). NBS1 657del5 mutation may contribute only to a limited fraction of breast cancer cases in Russia. Int J Cancer 114: 585–589.

    Article  CAS  Google Scholar 

  • Carlomagno F, Chang-Claude J, Dunning AM, Ponder BA . (1999). Determination of the frequency of the common 657Del5 Nijmegen breakage syndrome mutation in the German population: no association with risk of breast cancer. Genes Chromosomes Cancer 25: 393–395.

    Article  CAS  Google Scholar 

  • Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates III JR et al. (1998). The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93: 477–486.

    Article  CAS  Google Scholar 

  • Chen YC, Su YN, Chou PC, Chiang WC, Chang MC, Wang LS et al. (2005). Overexpression of NBS1 contributes to transformation through the activation of phosphatidylinositol 3-kinase/Akt. J Biol Chem 280: 32505–32511.

    Article  CAS  Google Scholar 

  • Cherry SM, Adelman CA, Theunissen JW, Hassold TJ, Hunt PA, Petrini JH . (2007). The Mre11 complex influences DNA repair, synapsis, and crossing over in murine meiosis. Curr Biol 17: 373–378.

    Article  CAS  Google Scholar 

  • Chrzanowska KH, Piekutowska-Abramczuk D, Popowska E, Gladkowska-Dura M, Maldyk J, Syczewska M et al. (2006). Carrier frequency of mutation 657del5 in the NBS1 gene in a population of Polish pediatric patients with sporadic lymphoid malignancies. Int J Cancer 118: 1269–1274.

    Article  CAS  Google Scholar 

  • Cybulski C, Gorski B, Debniak T, Gliniewicz B, Mierzejewski M, Masojc B et al. (2004). NBS1 is a prostate cancer susceptibility gene. Cancer Res 64: 1215–1219.

    Article  CAS  Google Scholar 

  • Debniak T, Gorski B, Cybulski C, Jakubowska A, Kurzawski G, Lener M et al. (2003). Germline 657del5 mutation in the NBS1 gene in patients with malignant melanoma of the skin. Melanoma Res 13: 365–370.

    Article  CAS  Google Scholar 

  • Demuth I, Frappart PO, Hildebrand G, Melchers A, Lobitz S, Stockl L et al. (2004). An inducible null mutant murine model of Nijmegen breakage syndrome proves the essential function of NBS1 in chromosomal stability and cell viability. Hum Mol Genet 13: 2385–2397.

    Article  CAS  Google Scholar 

  • Difilippantonio S, Celeste A, Fernandez-Capetillo O, Chen HT, Reina San Martin B, Van Laethem F et al. (2005). Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 7: 675–685.

    Article  CAS  Google Scholar 

  • Difilippantonio S, Celeste A, Kruhlak MJ, Lee Y, Difilippantonio MJ, Feigenbaum L et al. (2007). Distinct domains in Nbs1 regulate irradiation-induced checkpoints and apoptosis. J Exp Med 204: 1003–1011.

    Article  CAS  Google Scholar 

  • Dumon-Jones V, Frappart PO, Tong WM, Sajithlal G, Hulla W, Schmid G et al. (2003). Nbn heterozygosity renders mice susceptible to tumor formation and ionizing radiation-induced tumorigenesis. Cancer Res 63: 7263–7269.

    CAS  PubMed  Google Scholar 

  • Frappart PO, Tong WM, Demuth I, Radovanovic I, Herceg Z, Aguzzi A et al. (2005). An essential function for NBS1 in the prevention of ataxia and cerebellar defects. Nat Med 11: 538–544.

    Article  CAS  Google Scholar 

  • Gatei M, Young D, Cerosaletti KM, Desai-Mehta A, Spring K, Kozlov S et al. (2000). ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet 25: 115–119.

    Article  CAS  Google Scholar 

  • Gorski B, Debniak T, Masojc B, Mierzejewski M, Medrek K, Cybulski C et al. (2003). Germline 657del5 mutation in the NBS1 gene in breast cancer patients. Int J Cancer 106: 379–381.

    Article  CAS  Google Scholar 

  • Kang J, Bronson RT, Xu Y . (2002). Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. EMBO J 21: 1447–1455.

    Article  CAS  Google Scholar 

  • Kracker S, Bergmann Y, Demuth I, Frappart PO, Hildebrand G, Christine R et al. (2005). Nibrin functions in Ig class-switch recombination. Proc Natl Acad Sci USA 102: 1584–1589.

    Article  CAS  Google Scholar 

  • Krüger L, Demuth I, Neitzel H, Varon R, Sperling K, Chrzanowska KH et al. (2007). Cancer incidence in Nijmegen breakage syndrome is modulated by the amount of a variant NBS protein. Carcinogenesis 28: 107–111.

    Article  Google Scholar 

  • Lee JH, Paull TT . (2005). ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science 308: 551–554.

    Article  CAS  Google Scholar 

  • Lian G, Sheen V . (2006). Cerebral developmental disorders. Curr Opin Pediatr 18: 614–620.

    Article  Google Scholar 

  • Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH et al. (2000). ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404: 613–617.

    Article  CAS  Google Scholar 

  • Maser RS, Zinkel R, Petrini JH . (2001). An alternative mode of translation permits production of a variant NBS1 protein from the common Nijmegen breakage syndrome allele. Nat Genet 27: 417–421.

    Article  CAS  Google Scholar 

  • Matsuura S, Tauchi H, Nakamura A, Kondo N, Sakamoto S, Endo S et al. (1998). Positional cloning of the gene for Nijmegen breakage syndrome. Nat Genet 19: 179–181.

    Article  CAS  Google Scholar 

  • Meyer P, Stapelmann H, Frank B, Varon R, Burwinkel B, Schmitt C et al. (2007). Molecular genetic analysis of NBS1 in German melanoma patients. Melanoma Res 17: 109–116.

    Article  CAS  Google Scholar 

  • O'Driscoll M, Dobyns WB, van Hagen JM, Jeggo PA . (2007). Cellular and clinical impact of haploinsufficiency for genes involved in ATR signaling. Am J Hum Genet 81: 77–86.

    Article  CAS  Google Scholar 

  • Orii KE, Lee Y, Kondo N, McKinnon PJ . (2006). Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development. Proc Natl Acad Sci USA 103: 10017–10022.

    Article  CAS  Google Scholar 

  • Payne SR, Kemp CJ . (2005). Tumor suppressor genetics. Carcinogenesis 26: 2031–2045.

    Article  CAS  Google Scholar 

  • Porcedda P, Turinetto V, Lantelme E, Fontanella E, Chrzanowska K, Ragona R et al. (2006). Impaired elimination of DNA double-strand break-containing lymphocytes in ataxia telangiectasia and Nijmegen breakage syndrome. DNA Repair (Amst) 5: 904–913.

    Article  CAS  Google Scholar 

  • Powers JT, Hong S, Mayhew CN, Rogers PM, Knudsen ES, Johnson DG . (2004). E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol Cancer Res 2: 203–214.

    CAS  PubMed  Google Scholar 

  • Reina-San-Martin B, Nussenzweig MC, Nussenzweig A, Difilippantonio S . (2005). Genomic instability, endoreduplication, and diminished Ig class-switch recombination in B cells lacking Nbs1. Proc Natl Acad Sci USA 102: 1590–1595.

    Article  CAS  Google Scholar 

  • Resnick IB, Kondratenko I, Pashanov E, Maschan AA, Karachunsky A, Togoev O et al. (2003). 657del5 mutation in the gene for Nijmegen breakage syndrome (NBS1) in a cohort of Russian children with lymphoid tissue malignancies and controls. Am J Med Genet 120A: 174–179.

    Article  Google Scholar 

  • Rhee JG, Li D, Suntharalingam M, Guo C, O'Malley Jr BW, Carney JP . (2007). Radiosensitization of head/neck squamous cell carcinoma by adenovirus-mediated expression of the Nbs1 protein. Int J Radiat Oncol Biol Phys 67: 273–278.

    Article  CAS  Google Scholar 

  • Santarosa M, Ashworth A . (2004). Haploinsufficiency for tumour suppressor genes: when you don't need to go all the way. Biochim Biophys Acta 1654: 105–122.

    CAS  PubMed  Google Scholar 

  • Seemanova E . (1990). An increased risk for malignant neoplasms in heterozygotes for a syndrome of microcephaly, normal intelligence, growth retardation, remarkable facies, immunodeficiency and chromosomal instability. Mutat Res 238: 321–324.

    Article  CAS  Google Scholar 

  • Seemanova E, Jarolim P, Seeman P, Varon R, Sperling K . (2006a). Increased risk of malignancies in heterozygotes in families of patients with Nijmegen breakage syndrome. Cas Lek Cesk 145: 138–143.

    CAS  PubMed  Google Scholar 

  • Seemanová E, Hoch J, Herzogová J, Kawaciuk I, Janda J, Kohoutová M et al. (2006b). Mutations in tumor suppressor gene NBS1 in adult patients with malignancies. Cas Lek Cesk 145: 201–203.

    PubMed  Google Scholar 

  • Seemanova E, Koutecký J, Radvanská L, Starý J, Seeman P, Gebertová K et al. (2004). Tumor supressor gene NBS1 among children patients with malignancies. Ces-Slov Pediat 59: 242–245.

    Google Scholar 

  • Seemanova E, Sperling K, Neitzel H, Varon R, Hadac J, Butova O et al. (2006). Nijmegen breakage syndrome (NBS) with neurological abnormalities and without chromosomal instability. J Med Genet 43: 218–224.

    Article  CAS  Google Scholar 

  • Stanulla M, Stumm M, Dieckvoss BO, Seidemann K, Schemmel V, Muller Brechlin A et al. (2000). No evidence for a major role of heterozygous deletion 657del5 within the NBS1 gene in the pathogenesis of non-Hodgkin's lymphoma of childhood and adolescence. Br J Haematol 109: 117–120.

    Article  CAS  Google Scholar 

  • Steffen J, Maneva G, Poplawska L, Varon R, Mioduszewska O, Sperling K . (2006a). Increased risk of gastrointestinal lymphoma in carriers of the 657del5 NBS1 gene mutation. Int J Cancer 119: 2970–2973.

    Article  CAS  Google Scholar 

  • Steffen J, Nowakowska D, Niwinska A, Czapczak D, Kluska A, Piatkowska M et al. (2006b). Germline mutations 657del5 of the NBS1 gene contribute significantly to the incidence of breast cancer in Central Poland. Int J Cancer 119: 472–475.

    Article  CAS  Google Scholar 

  • Steffen J, Varon R, Mosor M, Maneva G, Maurer M, Stumm M et al. (2004). Increased cancer risk of heterozygotes with NBS1 germline mutations in Poland. Int J Cancer 111: 67–71.

    Article  CAS  Google Scholar 

  • Stiff T, Reis C, Alderton GK, Woodbine L, O'Driscoll M, Jeggo PA . (2005). Nbs1 is required for ATR-dependent phosphorylation events. EMBO J 24: 199–208.

    Article  CAS  Google Scholar 

  • Stracker TH, Morales M, Couto SS, Hussein H, Petrini JH . (2007). The carboxy terminus of NBS1 is required for induction of apoptosis by the MRE11 complex. Nature 447: 218–221.

    Article  CAS  Google Scholar 

  • Taylor GM, O'Brien HP, Greaves MF, Ravetto PF, Eden OB . (2001). Correspondence re: R Varon et al., Mutations in the Nijmegen breakage syndrome gene (NBS1) in childhood acute lymphoblastic leukemia. Cancer Res., 61: 3570–3572, 2001. Cancer Res 63: 6563–6564; author reply 6565.

    Google Scholar 

  • Urist M, Tanaka T, Poyurovsky MV, Prives C . (2004). p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev 18: 3041–3054.

    Article  CAS  Google Scholar 

  • Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y . (2003). Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22: 5612–5621.

    Article  CAS  Google Scholar 

  • Varon R, Reis A, Henze G, von Einsiedel HG, Sperling K, Seeger K . (2001). Mutations in the Nijmegen breakage syndrome gene (NBS1) in childhood acute lymphoblastic leukemia (ALL). Cancer Res 61: 3570–3572.

    CAS  PubMed  Google Scholar 

  • Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K et al. (1998). Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93: 467–476.

    Article  CAS  Google Scholar 

  • Weemaes CM, Hustinx TW, Scheres JM, van Munster PJ, Bakkeren JA, Taalman RD . (1981). A new chromosomal instability disorder: the Nijmegen breakage syndrome. Acta Paediatr Scand 70: 557–564.

    Article  CAS  Google Scholar 

  • Yeo TC, Xia D, Hassouneh S, Yang XO, Sabath DE, Sperling K et al. (2000). V(D)J rearrangement in Nijmegen breakage syndrome. Mol Immunol 37: 1131–1139.

    Article  CAS  Google Scholar 

  • Yuan Z, Zhang X, Sengupta N, Lane WS, Seto E . (2007). SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell 27: 149–162.

    Article  CAS  Google Scholar 

  • Zhang Y, Lim CU, Zhou J, Liber HH . (2007). The effects of NBS1 knockdown by small interfering RNA on the ionizing radiation-induced apoptosis in human lymphoblastoid cells with different p53 status. Toxicol Lett 171: 50–59.

    Article  CAS  Google Scholar 

  • Zhu J, Petersen S, Tessarollo L, Nussenzweig A . (2001). Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr Biol 11: 105–109.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Friedrich-Thyssen-Stiftung for financial support. We regret being unable to cite the excellent work of many authors due to space restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Digweed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demuth, I., Digweed, M. The clinical manifestation of a defective response to DNA double-strand breaks as exemplified by Nijmegen breakage syndrome. Oncogene 26, 7792–7798 (2007). https://doi.org/10.1038/sj.onc.1210876

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210876

Keywords

This article is cited by

Search

Quick links