Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Chromatin structure and DNA double-strand break responses in cancer progression and therapy

Abstract

Defects in the detection and repair of DNA double-strand breaks (DSBs) have been causatively linked to tumourigenesis. Moreover, inhibition of DNA damage responses (DDR) can increase the efficacy of cancer therapies that rely on generation of damaged DNA. DDR must occur within the context of chromatin, and there have been significant advances in recent years in understanding how the modulation and manipulation of chromatin contribute to this activity. One particular covalent modification of a histone variant—the phosphorylation of H2AX—has been investigated in great detail and has been shown to have important roles in DNA DSB responses and in preventing tumourigenesis. These studies are reviewed here in the context of their relevance to cancer therapy and diagnostics. In addition, there is emerging evidence for contributions by proteins involved in mediating higher order structure to DNA DSB responses. The contributions of a subset of these proteins—linker histones and high-mobility group box (HMGB) proteins—to DDR and their potential significance in tumourigenesis are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Alami R, Fan T, Pack S, Sonbuchner TM, Besse A, Lin Q et al. (2003). Mammalian linker-histone subtypes differentially affect gene expression in vivo. Proc Natl Acad Sci 100: 5920–5925.

    Article  CAS  Google Scholar 

  • Ausio J . (2000). Are linker histones (histone H1) dispensable for survival? BioEssays 22: 873–877.

    Article  CAS  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  Google Scholar 

  • Bassing CH, Suh H, Ferguson DO, Chua KF, Manis J, Eckersdorf M et al. (2003). Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114: 359–370.

    Article  CAS  Google Scholar 

  • Bergeron S, Madathiparambil T, Swanson PC . (2005). Both high mobility group (HMG)-boxes and the acidic tail of HMGB1 regulate recombination-activating gene (RAG)-mediated recombination signal synapsis and cleavage in vitro. J Biol Chem 280: 31314–31324.

    Article  CAS  Google Scholar 

  • Bianchi ME, Agresti A . (2005). HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev 15: 496–506.

    Article  CAS  Google Scholar 

  • Bredemeyer AL, Sharma GG, Huang CY, Helmink BA, Walker LM, Khor KC et al. (2006). ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442: 466–470.

    Article  CAS  Google Scholar 

  • Campisi J . (2005). Suppressing cancer: the importance of being senescent. Science 309: 886–887.

    Article  CAS  Google Scholar 

  • Celeste A, Difilppantonio S, Difilppantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedelnikova OA et al. (2003). H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114: 371–383.

    Article  CAS  Google Scholar 

  • Costelloe T, Fitzgerald J, Murphy NJ, Flaus A, Lowndes NF . (2006). Chromatin modulation and the DNA damage response. Exp Cell Res 312: 2677–2686.

    Article  CAS  Google Scholar 

  • Cowell IG, Durkacz BW, Tilby MJ . (2005). Sensitization of breast carcinoma cells to ionizing radiation by small molecule inhibitors of DNA-dependent protein kinase and ataxia telangiectsia mutated. Biochem Pharmacol 71: 13–20.

    Article  CAS  Google Scholar 

  • Dai Y, Wong B, Yen YM, Oettinger MA, Kwon J, Johnson RC . (2005). Determinants of HMGB proteins required to promote RAG1/2-recombination signal sequence complex assembly and catalysis during V(D)J recombination. Mol Cell Biol 25: 4413–4425.

    Article  CAS  Google Scholar 

  • Dokmanovic M, Marks PA . (2005). Prospects: histone deacetylase inhibitors. J Cell Biochem 96: 293–304.

    Article  CAS  Google Scholar 

  • Downs JA, Kosmidou E, Morgan A, Jackson SP . (2003). Suppression of homologous recombination by the Saccharomyces cerevisiae linker histone. Mol Cell 11: 1685–1692.

    Article  CAS  Google Scholar 

  • Downs JA, Nussenzweig MC, Nussenzweig A . (2007). Chromatin dynamics and the preservation of genetic information. Nature 447: 951–958.

    Article  CAS  Google Scholar 

  • Fan Y, Nikitina T, Zhao J, Fleury TJ, Bhattacharyya R, Bouhassira EE et al. (2005). Histone h1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123: 1199–1212.

    Article  CAS  Google Scholar 

  • Foster ER, Downs JA . (2005). Histone H2A phosphorylation in DNA double-strand break repair. FEBS Journal 272: 3231–3240.

    Article  CAS  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al. (2005). Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37: 391–400.

    Article  CAS  Google Scholar 

  • Franco S, Gostissa M, Zha S, Lombard DB, Murphy MM, Zarrin AA et al. (2006). H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol Cell 21: 201–214.

    Article  CAS  Google Scholar 

  • Funayama R, Saito M, Tanobe H, Ishikawa F . (2006). Loss of linker histone H1 in cellular senescence. J Cell Biol 175: 869–880.

    Article  CAS  Google Scholar 

  • Gallmeier E, Winter JM, Cunningham SC, Kahn SR, Kern SE . (2005). Novel genotoxicity assays identify norethindrone to activate p53 and phosphorylate H2AX. Carcinogenesis 26: 1811–1820.

    Article  CAS  Google Scholar 

  • Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science 300: 489–492.

    Article  CAS  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Harvey AC, Downs JA . (2004). What functions do linker histones provide? Mol Microbiol 53: 771–775.

    Article  CAS  Google Scholar 

  • Hasan S, Hottiger MO . (2002). Histone acetyl transferases: a role in DNA repair and DNA replication. J Mol Med 80: 463–474.

    Article  CAS  Google Scholar 

  • Hashimoto H, Sonoda E, Takami Y, Kimura H, Nakayama T, Tachibana M et al. (2007). Histone H1 variant, H1R is involved in DNA damage response. DNA Repair (in press).

  • Jackson SP . (2002). Sensing and repairing DNA double-strand breaks. Carcinogenesis 23: 687–696.

    Article  CAS  Google Scholar 

  • Kao J, Milano MT, Javaheri A, Garofalo MC, Chmura SJ, Weichselbaum RR et al. (2006). gamma-H2AX as a therapeutic target for improving the efficacy of radiation therapy. Curr Cancer Drug Targets 6: 197–205.

    Article  CAS  Google Scholar 

  • Konishi A, Shimizu S, Hirota J, Takao T, Fan Y, Matsuoka Y et al. (2003). Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell 114: 673–688.

    Article  CAS  Google Scholar 

  • Lavin MF, Delia D, Chessa L . (2006). ATM and the DNA damage response. EMBO Rep 7: 154–160.

    Article  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ . (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260.

    Article  CAS  Google Scholar 

  • Madhusudan S, Middleton MR . (2005). The emerging role of DNA repair proteins as predictive, prognostic and therapeutic targets in cancer. Cancer Treat Rev 31: 603–617.

    Article  CAS  Google Scholar 

  • Mahrhofer H, Burger S, Oppitz U, Flentje M, Djuzenova CS . (2006). Radiation induced DNA damage and damage repair in human tumor and fibroblast cell lines assessed by histone H2AX phosphorylation. Int J Radiat Oncol Biol Phys 64: 573–580.

    Article  CAS  Google Scholar 

  • Meng LH, Kohlhagen G, Liao ZY, Antony S, Sausville E, Pommier Y . (2005). DNA-protein cross-links and replication-dependent histone H2AX phosphorylation induced by aminoflavone (NSC 686288), a novel anticancer agent active against human breast cancer cells. Cancer Res 65: 5337–5343.

    Article  CAS  Google Scholar 

  • Michor F . (2005). Chromosomal instability and human cancer. Philos Trans R Soc Lond B Biol Sci 360: 631–635.

    Article  CAS  Google Scholar 

  • Morrison AJ, Shen X . (2005). DNA repair in the context of chromatin. Cell Cycle 4: 568–571.

    Article  CAS  Google Scholar 

  • Munshi A, Tanaka T, Hobbs ML, Tucker SL, Richon VM, Meyn RE . (2006). Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of gamma-H2AX foci. Mol Cancer Ther 5: 1967–1974.

    Article  CAS  Google Scholar 

  • Murr R, Loizou JI, Yang YG, Cuenin C, Li H, Wang ZQ et al. (2006). Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol 8: 91–99.

    Article  CAS  Google Scholar 

  • Nagaki S, Yamamoto M, Yumoto Y, Shirakawa H, Yoshida M, Teraoka H . (1998). Non-histone chromosomal proteins HMG1 and 2 enhance ligation reaction of DNA double-strand breaks. Biochem Biophys Res Commun 246: 137–141.

    Article  CAS  Google Scholar 

  • Neuman AA, Reddel RR . (2002). Telomere maintenance and cancer- look, no telomerase. Nat Rev Cancer 2: 879–884.

    Article  Google Scholar 

  • Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C et al. (2001). Loss of the Suv39 h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107: 323–337.

    Article  CAS  Google Scholar 

  • Peterson CL, Cote J . (2004). Cellular machineries for chromosomal DNA repair. Genes Dev 18: 602–616.

    Article  CAS  Google Scholar 

  • Qian X, LaRochelle WJ, Ara G, Wu F, Petersen KD, Thougaard A et al. (2006). Activity of PXD101, a histone deacetylase inhibitor, in preclinical ovarian cancer studies. Mol Cancer Ther 5: 2086–2095.

    Article  CAS  Google Scholar 

  • Qvarnstrom OF, Simonsson M, Johansson KA, Nyman J, Turesson I . (2004). DNA double strand break quantification in skin biopsies. Radiother Oncol 72: 311–317.

    Article  Google Scholar 

  • Ramiro AR, Jankovic M, Callen E, Difilippantonio S, Chen HT, McBride KM et al. (2006). Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature 440: 105–109.

    Article  CAS  Google Scholar 

  • Raucci A, Palumbo R, Bianchi ME . (2007). HMGB1: a signal of necrosis. Autoimmunity 40: 285–289.

    Article  CAS  Google Scholar 

  • Redon C, Pilch DR, Rogakou E, Sedelnikova OA, Newrock K, Bonner WM . (2002). Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 12: 162–169.

    Article  CAS  Google Scholar 

  • Reeves R, Adair JE . (2005). Role of high mobility group (HMG) chromatin proteins in DNA repair. DNA Repair (Amst) 4: 926–938.

    Article  CAS  Google Scholar 

  • Reina-San-Martin B, Difilppantonio S, Hanitsch L, Masilamani RF, Nussenzweig A, Nussenzweig MC . (2003). H2AX is required for recombination between immunoglobulin switch regions but not for intra-switch region recombination or somatic hypermutation. J Exp Med 197: 1767–1778.

    Article  CAS  Google Scholar 

  • Scaffidi P, Misteli T, Bianchi ME . (2002). Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418: 191–195.

    Article  CAS  Google Scholar 

  • Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M et al. (2005). Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435: 1262–1266.

    Article  CAS  Google Scholar 

  • Stros M, Cherny D, Jovin TM . (2000). HMG1 protein stimulates DNA end joining by promoting association of DNA molecules via their ends. Eur J Biochem 267: 4088–4097.

    Article  CAS  Google Scholar 

  • Sun Y, Jiang X, Chen S, Fernandes N, Price BD . (2005). A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA 102: 13182–13187.

    Article  CAS  Google Scholar 

  • Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W et al. (2000). Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405: 354–360.

    Article  CAS  Google Scholar 

  • Taneja N, Davis M, Choy JS, Beckett MA, Singh R, Kron SJ et al. (2004). Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy. J Biol Chem 279: 2273–2280.

    Article  CAS  Google Scholar 

  • Teng S-C, Zakian VA . (1999). Telomere–telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 19: 8083–8093.

    Article  CAS  Google Scholar 

  • Thomas JO, Travers AA . (2001). HMG1 and 2, and related ‘archetectural’ DNA binding proteins. Trends Biochem Sci 26: 167–174.

    Article  CAS  Google Scholar 

  • Travers AA . (2003). Priming the nucleosome: a role for HMGB proteins? EMBO Rep 4: 131–136.

    Article  CAS  Google Scholar 

  • Ueda T, Shirakawa H, Yoshida M . (2002). Involvement of HMGB1 and HMGB2 proteins in exogenous DNA integration reaction into the genome of HeLa S3 cells. Biochim Biophys Acta 1593: 77–84.

    Article  CAS  Google Scholar 

  • van Attikum H, Gasser SM . (2005). The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 6: 757–765.

    Article  CAS  Google Scholar 

  • Vogel H, Lim D-S, Karsenty G, Finegold M, Hasty P . (1999). Deletion of Ku86 causes early onset of senescence in mice. Proc Natl Acad Sci 96: 10770–10775.

    Article  CAS  Google Scholar 

  • Williams RS, Williams JS, Tainer JA . (2007). Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol 85: 509–520.

    Article  CAS  Google Scholar 

  • Xu WS, Parmigiani RB, Marks PA . (2007). Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26: 5541–5552.

    Article  CAS  Google Scholar 

  • Yamanaka S, Katayama E, Yoshioka K, Nagaki S, Yoshida M, Teraoka H . (2002). Nucleosome linker proteins HMGB1 and histone H1 differentially enhance DNA ligation reactions. Biochem Biophys Res Commun 292: 268–273.

    Article  CAS  Google Scholar 

  • Yoshida K, Morita T . (2004). Control of radiosensitivity of F9 mouse teratocarcinoma cells by regulation of histone H2AX gene expression using a tetracycline turn-off system. Cancer Res 64: 4131–4136.

    Article  CAS  Google Scholar 

  • Yu T, MacPhail SH, Banath JP, Klokov D, Olive PL . (2006). Endogenous expression of phosphorylated histone H2AX in tumors in relation to DNA double-strand breaks and genomic instability. DNA Repair (Amst) 5: 935–946.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Downs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downs, J. Chromatin structure and DNA double-strand break responses in cancer progression and therapy. Oncogene 26, 7765–7772 (2007). https://doi.org/10.1038/sj.onc.1210874

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210874

Keywords

This article is cited by

Search

Quick links